Advertisement

Neuroscience Bulletin

, 25:237 | Cite as

Roles of the hippocampal formation in pain information processing

  • Ming-Gang Liu (刘明刚)
  • Jun Chen (陈军)
Review

Abstract

Pain is a complex experience consisting of sensory-discriminative, affective-motivational, and cognitive-evaluative dimensions. Now it has been gradually known that noxious information is processed by a widely-distributed, hierarchically-interconnected neural network, referred to as neuromatrix, in the brain. Thus, identifying the multiple neural networks subserving these functional aspects and harnessing this knowledge to manipulate the pain response in new and beneficial ways are challenging tasks. Albeit with elaborate research efforts on the cortical responses to painful stimuli or clinical pain, involvement of the hippocampal formation (HF) in pain is still a matter of controversy. Here, we integrate previous animal and human studies from the viewpoint of HF and pain, sequentially representing anatomical, behavioral, electrophysiological, molecular/biochemical and functional imaging evidence supporting the role of HF in pain processing. At last, we further expound on the relationship between pain and memory and present some unresolved issues.

Keywords

pain hippocampal formation anatomy behavior electrophysiology functional imaging 

海马结构在疼痛信息处理中的作用

摘要

众所周知, 疼痛是一种复杂的体验与经历, 包括感觉识辨、 情绪动机和认知评价三个主要组成部分。 近年来, 人们已经逐渐认识到外周传来的伤害性信息是由脑内一个广泛存在的、 阶梯分明的神经元网络(也可称为疼痛基质)完成的。 因此, 鉴定出这些负责疼痛各功能要素的多级神经元网络, 并利用所获知识更好地治疗疼痛, 已经成为摆在人们面前的艰巨任务。 虽然关于痛刺激或者临床痛激发的皮层反应相关研究已经很多, 但是对海马结构在痛觉处理中的作用仍存在分歧。 在这里, 我们整合了前人在动物和人的海马与痛的关系方面的研究工作, 依次提供解剖学、 行为学、 电生理学、 分子生物学或生物化学及功能成像方面的证据, 证明海马结构与痛觉信息处理的相关性。 最后, 简单阐述痛与记忆之间的关系, 并提出尚未解决的问题, 以指导将来的研究。

关键词

痛 海马结构 解剖 行为 电生理 功能成像 

CLC number

Q432 R338.3 

References

  1. [1]
    Melzack R, Casey KL. Sensory, motivational, and central control determinants of pain. In: Kenshalo DR Ed. The skin senses. Springfield (IL): Charles C. Thomas, 1968, 423–439.Google Scholar
  2. [2]
    Price DD. Psychological mechanisms of pain and analgesia. Seattle: IASP Press, 1999.Google Scholar
  3. [3]
    Bushnell MC, Apkarian AV. Representation of pain in the brain. In: McMahon SB, Koltzenburg M Ed. Wall and Melzack’s Textbook of Pain, 5th edition. China: Elsevier Ltd., Churchill Livingstone, 2006, 107–124.Google Scholar
  4. [4]
    Rainville P. Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol 2002, 12: 195–204.PubMedCrossRefGoogle Scholar
  5. [5]
    Willis WD. Nociceptive pathways: anatomy and physiology of nociceptive ascending pathways. Philos Trans R Soc Lond B Bio Sci 1985, 308: 253–268.CrossRefGoogle Scholar
  6. [6]
    Melzack R. Evaluation of the neuromatrix theory of pain. Pain Pract 2005, 5: 85–94.PubMedCrossRefGoogle Scholar
  7. [7]
    Melzack R. The future of pain. Nat Rev Drug Discov 2008, 7: 629.PubMedCrossRefGoogle Scholar
  8. [8]
    Dick BD, Rashiq S. Disruption of attention and working memory traces in individuals with chronic pain. Anesth Analg 2007, 104: 1223–1229.PubMedCrossRefGoogle Scholar
  9. [9]
    Fishbain DA, Cutler R, Rosomoff HL, Rosomoff RS. Chronic pain-associated depression: antecedent or consequence chronic pain? A review. Clin J Pain 1997, 13: 116–137.CrossRefGoogle Scholar
  10. [10]
    Ling J, Campbell C, Heffernan TM, Greenough CG. Short-term prospective memory deficits in chronic back pain patients. Psychosom Med 2007, 69: 144–148.PubMedCrossRefGoogle Scholar
  11. [11]
    Narita M, Kaneko C, Miyoshi K, Nagumo Y, Kuzumaki N, Nakajima M et al. Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology 2006, 31: 739–750.PubMedCrossRefGoogle Scholar
  12. [12]
    Zhao XY, Liu MG, Yuan DL, Wang Y, Zhang FK, Chen XF et al. Nociception-induced spatial and temporal plasticity of synaptic connection and function in the hippocampal formation of rats: a multi-electrode array recording. Mol Pain 2009 (in press).Google Scholar
  13. [13]
    Casey KL. The imaging of pain: background and rationale. In: Casey KL, Bushnell MC Ed. Pain imaging. Seattle: IASP Press, 2000, 1–29.Google Scholar
  14. [14]
    Talbot JD, Marrett S, Evans AC, Meyer E, Bushnell MC, Duncan GH. Multiple representations of pain in human cerebral cortex. Science 1991, 251: 1355–1358.PubMedCrossRefGoogle Scholar
  15. [15]
    Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron 2007, 55: 377–391.PubMedCrossRefGoogle Scholar
  16. [16]
    Treede RD, Kenshal DR, Gracely RH, Jones AKP. The cortical representation of pain. Pain 1999, 79: 105–111.PubMedCrossRefGoogle Scholar
  17. [17]
    Duvernoy HM. The Human Hippocampus. Berlin: Springer-Verlag, 2005.Google Scholar
  18. [18]
    Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiat 1937, 38: 725–744.Google Scholar
  19. [19]
    Aloisi AM, Casamenti F, Scali C, Pepeu G, Carli G. Effects of novelty, pain and stress on hippocampal extracellular acetylcholine levels in male rats. Brain Res 1997, 748: 219–226.PubMedCrossRefGoogle Scholar
  20. [20]
    Bird CM, Burgess N. The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 2008, 9: 182–194.PubMedCrossRefGoogle Scholar
  21. [21]
    Eichenbaum H. Conscious awareness, memory and the hippocampus. Nat Neurosci 1999, 2: 775–776.PubMedCrossRefGoogle Scholar
  22. [22]
    Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci 2000, 1: 41–50.PubMedCrossRefGoogle Scholar
  23. [23]
    Jaffard R, Meunier M. Role of the hippocampal formation in learning and memory. Hippocampus 1993, 3: 203–217.PubMedGoogle Scholar
  24. [24]
    Duric V, McCarson KE. Hippocampal neurokinin-1 receptor and brain-derived neurotrophic factor gene expression is decreased in rat models of pain and stress. Neuroscience 2005, 133: 999–1006.PubMedCrossRefGoogle Scholar
  25. [25]
    Duric V, McCarson KE. Neurokinin-1 (NK-1) receptor and brainderived neurotrophic factor (BDNF) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain. Mol Pain 2007, 3: 32.PubMedCrossRefGoogle Scholar
  26. [26]
    Oddie SD, Bland BH. Hippocampal formation theta activity and movement selection, Neurosci Biobehav Rev 1998, 22: 221–231.PubMedCrossRefGoogle Scholar
  27. [27]
    Al Amin HA, Atweh SF, Jabbur SJ, Saade NE. Effects of ventral hippocampal lesion on thermal and mechanical nociception in neonates and adult rats. Eur J Neurosci 2004, 20: 3027–3034.PubMedCrossRefGoogle Scholar
  28. [28]
    Echeverry MB, Guimarães FS, Del Bel EA. Acute and delayed restraint stress-induced changes in nitric oxide producing neurons in limbic regions. Neuroscience 2004, 125: 981–993.PubMedCrossRefGoogle Scholar
  29. [29]
    Favaroni Mendes LA, Menescal-de-Oliveira L. Role of cholinergic, opioidergic and GABAergic neurotransmission of the dorsal hippocampus in the modulation of nociception in guinea pigs. Life Sci 2008, 83: 644–650.PubMedCrossRefGoogle Scholar
  30. [30]
    Khanna S, Chang LS, Jiang F, Koh HC. Nociception-driven decreased induction of Fos protein in ventral hippocampus field CA1 of the rat. Brain Res 2004, 1004: 167–176.PubMedCrossRefGoogle Scholar
  31. [31]
    Lathe R. Hormones and the hippocampus. J Endocrinol 2001, 169: 205–231.PubMedCrossRefGoogle Scholar
  32. [32]
    McKenna JE, Melzack R. Analgesia produced by lidocaine microinjection into the dentate gyrus. Pain 1992, 49: 105–112.PubMedCrossRefGoogle Scholar
  33. [33]
    McKenna JE, Melzack R. Blocking NMDA receptors in the hippocampal dentate gyrus with AP5 produces analgesia in the formalin pain test. Exp Neurol 2001, 172: 92–99.PubMedCrossRefGoogle Scholar
  34. [34]
    Soleimannejad E, Naghdi N, Semnanian S, Fathollahi Y, Kazemnejad A. Antinociceptive effect of intra-hippocampal CA1 and dentate gyrus injection of MK801 and AP5 in the formalin test in adult male rats. Eur J Pharmacol 2007, 562: 39–46.PubMedCrossRefGoogle Scholar
  35. [35]
    Soleimannejad E, Semnanian S, Fathollahi Y, Naghdi N. Microinjection of ritanserin into the dorsal hippocampal CA1 and dentate gyrus decrease nociceptive behavior in adult male rat. Behav Brain Res 2006, 168: 221–225.PubMedCrossRefGoogle Scholar
  36. [36]
    Yamamotov’a A, Franìk M, Vaculín Š, Št’astny’ F, Bubeníkov’a-Valešov’a V, Rokyta R. Different transfer of nociceptive sensitivity from rats with postnatal hippocampal lesions to control rats. Eur J Neurosci 2007, 26: 446–450.CrossRefGoogle Scholar
  37. [37]
    Teyler TJ, DiScenna P. The topological anatomy of the hippocampus. Brain Res Bull 1984, 12: 711–719.PubMedCrossRefGoogle Scholar
  38. [38]
    van Strien NM, Cappaert NLM, Witter MP. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci 2009, 10: 272–282.PubMedCrossRefGoogle Scholar
  39. [39]
    Amaral DG, Witter MP. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 1989, 31: 571–591.PubMedCrossRefGoogle Scholar
  40. [40]
    Amaral DG, Lavenex P. The Hippocampus Book. New York: Oxford Univ Press, 2007.Google Scholar
  41. [41]
    Jones RSG. Entorhinal-hippocampal connections: a speculative view of their function. Trends Neurosci 1993, 16: 58–64.PubMedCrossRefGoogle Scholar
  42. [42]
    Wyss JM. An autoradiographic study of the efferent connections of the entorhinal cortex in the rat. J Comp Neurol 1981, 199: 495–512.PubMedCrossRefGoogle Scholar
  43. [43]
    Cajal SR. The structure of Ammon’s Horn (trans. L Kraft). Springfield, MA: CC Thomas, 1968.Google Scholar
  44. [44]
    Dolorfo CL, Amaral DG. Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J Comp Neurol 1998, 398: 25–48.PubMedCrossRefGoogle Scholar
  45. [45]
    Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AH. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 1989, 33: 161–253.PubMedCrossRefGoogle Scholar
  46. [46]
    Kohler C. A projection from the deep layers of the entorhinal area to the hippocampal formation in the rat brain. Neurosci Lett 1985, 56: 13–19.PubMedCrossRefGoogle Scholar
  47. [47]
    Witter MP, Griffioen AW, Jorritsma-Byham B, Krijnen JL. Entorhinal projections to the hippocampal CA1 region in the rat: an underestimated pathway. Neurosci Lett 1988, 85: 193–198.PubMedCrossRefGoogle Scholar
  48. [48]
    Hjorth-Simonsen A, Jeune B. Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol 1972, 144: 215–232.PubMedCrossRefGoogle Scholar
  49. [49]
    Steward O. Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J Comp Neurol 1976, 167: 285–314.PubMedCrossRefGoogle Scholar
  50. [50]
    Steward O, Scoville SA. Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 1976, 169: 347–370.PubMedCrossRefGoogle Scholar
  51. [51]
    Colbert CM, Levy WB. Electrophysiological and pharmacological characterization of perforant path synapses in CA1 mediation by glutamate receptors. J Neurophysiol 1992, 68: 1–8.PubMedGoogle Scholar
  52. [52]
    Doller HJ, Weight FF. Perforant pathway activation of hippocampal CA1 stratum pyramidale neurons: electrophysiological evidence for a direct pathway. Brain Res 1982, 237: 1–13.PubMedCrossRefGoogle Scholar
  53. [53]
    Empson RM, Heinemann U. The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice. J Physiol 1995, 484: 707–720.PubMedGoogle Scholar
  54. [54]
    Lømo T. Patterns of activation in a monosynaptic cortical pathway: the perforant path input to the dentate area of the hippocampal formation. Exp Brain Res 1971, 12: 18–45.PubMedGoogle Scholar
  55. [55]
    Yeckel MF, Berger TW. Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proc Natl Acad Sci 1990, 87: 5832–5836.PubMedCrossRefGoogle Scholar
  56. [56]
    Khanna S. Dorsal hippocampus field CA1 pyramidal cell responses to a persistent versus an acute nociceptive stimulus and their septal modulation. Neuroscience 1997, 77: 713–721.PubMedCrossRefGoogle Scholar
  57. [57]
    Zheng F, Khanna S. Selective destruction of medial septal cholinergic neurons attenuates pyramidal cell suppression, but not excitation in dorsal hippocampus field CA1 induced by subcutaneous injection of formalin. Neuroscience 2001, 103: 985–998.PubMedCrossRefGoogle Scholar
  58. [58]
    Zheng F, Khanna S. Intra-hippocampal tonic inhibition influences formalin pain-induced pyramidal cell suppression, but not excitation in dorsal field CA1 of rat. Brain Res Bull 2008, 77: 374–381.PubMedCrossRefGoogle Scholar
  59. [59]
    Henke PG. The telencephalic limbic system and experimental gastric pathology: a review. Neurosci Biobehav Rev 1982, 6: 381–390.PubMedCrossRefGoogle Scholar
  60. [60]
    Domesick VB. The fasciculus cinguli in the rat. Brain Res 1970, 20: 19–32.PubMedCrossRefGoogle Scholar
  61. [61]
    Pandya J. The connections of the cingulate gyrus. Exp Brain Res 1981, 42: 319–330.PubMedCrossRefGoogle Scholar
  62. [62]
    Foltz EL, White LE. Pain “relief” by frontal cingulumotomy. J Neurosurg 1962, 19: 89–100.PubMedCrossRefGoogle Scholar
  63. [63]
    Vaccarino AL, Melzack R. Temporal processes of formalin pain: differential role of the cingulum bundle, fornix pathway and medial bulboreticular formation. Pain 1992, 49: 257–271.PubMedCrossRefGoogle Scholar
  64. [64]
    Friedman DP, Murray EA, O’Neill JB, Mishkin M. Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J Comp Neurol 1986, 252: 323–347.PubMedCrossRefGoogle Scholar
  65. [65]
    Mesulam MM, Mufson EJ. Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol. 1982, 212: 38–52.PubMedCrossRefGoogle Scholar
  66. [66]
    Klossika I, Flor H, Kamping S, Bleichhardt G, Trautmann N, Treede RD et al. Emotional modulation of pain: a clinical perspective. Pain 2006, 124: 264–268.PubMedCrossRefGoogle Scholar
  67. [67]
    Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science 2000, 288: 1769–1772.PubMedCrossRefGoogle Scholar
  68. [68]
    Amaral DG, Kurz J. An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 1985, 240: 37–59.PubMedCrossRefGoogle Scholar
  69. [69]
    Dutar P, Bassant MH, Senut MC, Lamour Y. The septohippocampal pathway: structure and function of a central system. Physiol Rev 1995, 75: 393–427.PubMedGoogle Scholar
  70. [70]
    Fibiger HC. The organization and projections of cholinergic neurons of the mammalian forebrain. Brain Res Rev 1982, 257: 327–388.CrossRefGoogle Scholar
  71. [71]
    Fonnum F, Walaas I. The effect of intrahippocampal kainic acid injections and surgical lesions on neurotransmitters in the hippocampus and septum. J Neurochem 1978, 31: 1173–1181.PubMedCrossRefGoogle Scholar
  72. [72]
    Aloisi AM. Sex differences in pain-induced effects on the septohippocampal system. Brain Res Rev 1997, 25: 397–406.PubMedCrossRefGoogle Scholar
  73. [73]
    Swanson LW, Cowan WM. The connections of the septal region in the rat. J Comp Neurol 1979, 186: 621–656.PubMedCrossRefGoogle Scholar
  74. [74]
    Dutar P, Lamour Y, Jobert A. Activation of identified septohippocampal neurons by noxious peripheral stimulation. Brain Res 1985, 328: 15–21.PubMedCrossRefGoogle Scholar
  75. [75]
    Khanna S, Sinclair JG. Responses in the CA1 region of the rat hippocampus to a noxious stimulus. Exp Neurol 1992, 117: 28–35.PubMedCrossRefGoogle Scholar
  76. [76]
    Meibach RC, Siegel A. Efferent connections of the hippocampal formation in the rat. Brain Res 1977, 124: 197–224.PubMedCrossRefGoogle Scholar
  77. [77]
    Powell EW, Hines G. Septohippocampal interface. In: Isaacson RL, Pribram KH Ed. The Hippocampus. New York: Plenum, 1975.Google Scholar
  78. [78]
    Siegel A, Ohgami S, Edinger H. Projections of the hippocampus to the septal area in the squirrel monkey. Brain Res 1975, 99: 247–260.PubMedCrossRefGoogle Scholar
  79. [79]
    Hjorth-Simonsen A. Hippocampal efferents to the ipsilateral entorhinal area: an experimental study in the rat. J Comp Neurol 1971, 142: 417–437.PubMedCrossRefGoogle Scholar
  80. [80]
    Swanson LW, Cowan WM. An audioradographic study of the organization of efferent connections of the hippocampal formation in the rat. J Comp Neurol 1977, 172: 48–84.CrossRefGoogle Scholar
  81. [81]
    Lico MC, Hoffmann A, Covian MR. Influence of some limbic structures upon somatic and autonomic manifestations of pain. Physiol Behav 1974, 12: 805–811.PubMedCrossRefGoogle Scholar
  82. [82]
    Prado WA, Roberts HT. An assessment of the antinociceptive and aversive effects of stimulating identified sites in the rat brain. Brain Res 1985, 340: 219–238.PubMedCrossRefGoogle Scholar
  83. [83]
    Yeung JC, Yaksh TL, Rudy TA. Concurrent mapping of brain sites for sensitivity to the direct application of morphine and focal electrical stimulation in the production of antinociception in the rat. Pain 1977, 4: 23–40.PubMedCrossRefGoogle Scholar
  84. [84]
    Sinha R, Sharma R, Mathur R, Nayar U. Hypothalamo-limbic involvement in modulation of tooth-pump stimulation evoked nociceptive response in rats. Indian J Physiol Pharmacol 1999, 43: 323–331.PubMedGoogle Scholar
  85. [85]
    MacLean PD, Delgado JMR. Electrical and chemical stimulation of frontotemporal portion of limbic system in the waking animal. Electroenceph Clin Neurophysiol 1953, 5: 91–100.PubMedCrossRefGoogle Scholar
  86. [86]
    Abbott FV, Melzack R. Analgesia produced by stimulation of limbic structures and its relation to epileptiform after-discharges. Exp Neurol 1978, 62: 720–734.PubMedCrossRefGoogle Scholar
  87. [87]
    Delgado JM. Cerebral structures involved in transmission and elaboration of noxious stimulation. J Neurophysiol 1955, 18: 261–275.PubMedGoogle Scholar
  88. [88]
    Halgren E, Walter RD, Cherlow DG, Crandall PH. Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain 1978, 101: 83–117.PubMedCrossRefGoogle Scholar
  89. [89]
    Jackson WJ Regestein QR. Hippocampal lesions impair prolonged titrated avoidance by rhesus monkey. Exp Neurol 1979, 63: 28–34.PubMedCrossRefGoogle Scholar
  90. [90]
    Gol A, Kellaway P, Shapiro M, Hurst CM. Studies of hippocampectomy in the monkey, baboon and cat. Behavioral changes and a preliminary evaluation of cognitive functions. Neurology 1963, 13: 1031–1041.PubMedGoogle Scholar
  91. [91]
    Schreiner L, Kling A. Behavioral changes following rhinocephalic injury in the cat. J Neurophysiol 1953, 16: 643–659.PubMedGoogle Scholar
  92. [92]
    Teitelbaum H, Milner P. Activity changes following partial hippocampal lesions in rats. J Comp Physiol Psychol 1963, 56: 284–289.PubMedCrossRefGoogle Scholar
  93. [93]
    Blanchard RJ, Fial R. Effects of limbic lesions on passive avoidance and reactivity to shock. J Comp Physiol Psychol 1968, 66: 606–612.PubMedCrossRefGoogle Scholar
  94. [94]
    Eichelman BS. Effect of subcortical lesions on shock-induced aggression in the rat. J Comp Physiol Psychol 1971, 74: 331–339.PubMedCrossRefGoogle Scholar
  95. [95]
    Kimble DP. The effects of bilateral hippocampal lesions in rats. J Comp Physiol Psychol 1963, 56: 273–283.PubMedCrossRefGoogle Scholar
  96. [96]
    Roberts WW, Dember WN, Brodwick M. Alteration and exploration in rats with hippocampal lesions. J Comp Physiol Psychol 1962, 55: 695–700.PubMedCrossRefGoogle Scholar
  97. [97]
    Blanchard RJ, Blanchard DC. Limbic lesions and reflexive fighting. J Comp Physiol Psychol 1968, 66: 603–605.PubMedCrossRefGoogle Scholar
  98. [98]
    McCleary RA. Response specificity in the behavioral effects of limbic system lesions in the cat. J Comp Physiol Psychol 1961, 54: 605–613.CrossRefGoogle Scholar
  99. [99]
    Olton DS, Isaacson RL. Importance of spatial location in active avoidance tasks. J Comp Physiol Psychol 1968, 65: 535–539.PubMedCrossRefGoogle Scholar
  100. [100]
    Douglas RJ. The hippocampus and behavior. Psychol Bull 1967, 67: 416–442.PubMedCrossRefGoogle Scholar
  101. [101]
    Olton DS, Isaacson RL. Hippocampal lesions and active avoidance. Physiol Behav 1968, 3: 719–724.CrossRefGoogle Scholar
  102. [102]
    Nadel L. Dorsal and ventral hippocampal lesions and behavior. Physiol Behav 1968, 3: 891–900.CrossRefGoogle Scholar
  103. [103]
    Segal M, Landis S. Afferents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidase. Brain Res 1974, 87: 1–15.CrossRefGoogle Scholar
  104. [104]
    Elul R. Regional differences in the hippocampus of the cat. I. Specific discharge patterns of the dorsal and ventral hippocampus and their role in generalized seizures. Electroenceph Clin Neurophysiol 1964, 16: 470–488.PubMedCrossRefGoogle Scholar
  105. [105]
    Andy OJ, Peeler DF Jr, Foshee DP. Avoidance and discrimination learning following hippocampal ablation in the cat. J Comp Physiol Psychol 1967, 64: 516–519.PubMedCrossRefGoogle Scholar
  106. [106]
    Wood G, Marcotte ER, Quirion R, Srivastava L. Strain differences in the behavioural outcome of neonatal ventral hippocampal lesions are determined by postnatal environment and not genetic factors. Eur J Neurosci 2001, 14: 1030–1034.PubMedCrossRefGoogle Scholar
  107. [107]
    Gol A, Faibish GM. Hippocampectomy for relief of intractable pain. Tex Med 1966, 62: 76–79.PubMedGoogle Scholar
  108. [108]
    Gol A, Faibish GM. Effects of human hippocampal ablation. J Neurosurg 1967, 26: 390–398.PubMedCrossRefGoogle Scholar
  109. [109]
    Hebben N, Corkin S, Eichenbaum H, Shedlack K. Diminished ability to interpret and report internal states after bilateral medial temporal resection: case H.M. Behav Neurosci 1985, 99: 1031–1039.PubMedCrossRefGoogle Scholar
  110. [110]
    Corkin S. Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M.. Sem Neurol 1984, 4: 249–259.CrossRefGoogle Scholar
  111. [111]
    Aloisi AM, Ceccarelli I, Cavallaro K, Scaramuzzino A. 192 IgGsaporin induced selective cholinergic denervation modifies formalin pain in male rats. Analgesia 2002, 6: 19–25.Google Scholar
  112. [112]
    Bartolini A, Ghelardini C, Fantetti L, Malcangio M, Malmberg-Aiello P, Giotti A. Role of muscarinic receptor subtypes in central antinociception. Br J Pharmacol 1992, 105: 77–82.PubMedGoogle Scholar
  113. [113]
    Green PG, Kitchen I. Antinociception opioids and the cholinergic system. Prog Neurobiol 1986, 26: 119–146.PubMedCrossRefGoogle Scholar
  114. [114]
    Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci 1995, 15: 4077–4092.PubMedGoogle Scholar
  115. [115]
    Woolf NJ, Eckenstein F, Butcher LL. Cholinergic systems in the rat brain: I. Projections to the limbic telencephalon. Brain Res Bull 1984, 13: 751–784.PubMedCrossRefGoogle Scholar
  116. [116]
    Acsady L, Halasy K, Freund TF. Calretinin is present in nonpyramidal cells of the rat hippocampus. III. Their inputs from the median raphe and medial septal nuclei. Neuroscience 1993, 52: 829–841.PubMedCrossRefGoogle Scholar
  117. [117]
    Moore RY, Halaris AE. Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J Comp Neurol 1975, 164: 171–184.PubMedCrossRefGoogle Scholar
  118. [118]
    Obata H, Saito S, Ishizaki K, Goto F. Antinociception in rat by sarpogrelate, a selective 5-HT2A receptor antagonist, is peripheral. Eur J Pharmacol 2000, 404: 95–102.PubMedCrossRefGoogle Scholar
  119. [119]
    Wei H, Pertovaara A. 5-HT1A receptors in endogenous regulation of neuropathic hypersensitivity in the rat. Eur J Pharmacol 2006, 535: 157–165.PubMedCrossRefGoogle Scholar
  120. [120]
    Kal’en P, Rosegren E, Lindvall O, Björklund A. Hippocampal noradrenaline and serotonin release over 24 Hours as measured by the dialysis technique in freely moving rats: correlation to behavioural activity state, effect of handling and tail-pinch. Eur J Neurosci 1989, 1: 181–188.CrossRefGoogle Scholar
  121. [121]
    Glavin GB. Stress and brain noradrenaline: a review. Neurosci Biobehav Rev 1985, 9: 233–243.PubMedCrossRefGoogle Scholar
  122. [122]
    Abercrombie ED, Keller RW, Zigmond MJ. Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies. Neuroscience 1988, 3: 897–904.CrossRefGoogle Scholar
  123. [123]
    Compton DM, Dietrich KL, Smith JS, Davis BK. Spatial and non-spatial learning in the rat following lesions to the nucleus locus coeruleus. NeuroReport 1995, 7: 177–182.PubMedGoogle Scholar
  124. [124]
    Rosario LA, Abercrombie ED. Individual differences in behavioral reactivity correlation with stress-induced norepinephrine efflux in the hippocampus of Sprague-Dawley rats. Brain Res Bull 1999, 48: 595–602.PubMedCrossRefGoogle Scholar
  125. [125]
    Samanin R, Garattini S. The serotonergic system in the brain and its possible functional connections with aminergic systems. Life Sci 1975, 17: 1201–1210.PubMedCrossRefGoogle Scholar
  126. [126]
    Gage FH, Springer JE. Behavioral assessment of norepinephrine and serotonin function and interaction in the hippocampal formation. Pharmacol Biochem Behav 1981, 14: 815–821.PubMedCrossRefGoogle Scholar
  127. [127]
    Spinella M, Bodnar RJ. Nitric oxide synthase inhibition selectively potentiates swim stress antinociception in rats. Pharmacol Biochem Behav 1994, 47: 727–733.PubMedCrossRefGoogle Scholar
  128. [128]
    Haley JE, Dickenson AH, Schachter M. Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat. Neuropharmacology 1992, 31: 251–258.PubMedCrossRefGoogle Scholar
  129. [129]
    Meller ST, Cumming CP, Traub RJ, Gebhart GF. The role of nitric oxide in the development and maintenance of the hyperalgesia produced by intraplantar injection of carrageenan in the rat. Neuroscience 1994, 60: 367–374.PubMedCrossRefGoogle Scholar
  130. [130]
    Echeverry MB, Guimarães FS, Oliveira MA, do Prado WA, Del Bel EA. Delayed stress-induced antinociceptive effect of nitric oxide synthase inhibition in the dentate gyrus of rats. Pharmacol Biochem Behav 2002, 74: 149–156.PubMedCrossRefGoogle Scholar
  131. [131]
    Vane JR, Bakhl YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 1998, 38: 97–120.PubMedCrossRefGoogle Scholar
  132. [132]
    Teather LA, Magnusson JE, Wurtman RJ. Platelet-activating factor antagonists decrease the inflammatory nociceptive response in rats. Psychopharmacology 2002, 163: 430–433.PubMedCrossRefGoogle Scholar
  133. [133]
    Marcheselli VL, Rossowska MJ, Domingo MT, Braquet P, Bazan NG. Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J Biol Chem 1990, 265: 9140–9145.PubMedGoogle Scholar
  134. [134]
    Teather LA, Afonso VM, Wurtman RJ. Inhibition of platelet-activating factor receptors in hippocampal plasma membranes attenuates the inflammatory nociceptive response in rats. Brain Res 2006, 1097: 230–233.PubMedCrossRefGoogle Scholar
  135. [135]
    Besson J, Sarrieau A, Vial M, Marie JC, Rosselin G, Rostene W. Characterization and autoradiographic distribution of vasoactive intestinal peptide binding sites in the rat central nervous system. Brain Res 1986, 398: 329–336.PubMedCrossRefGoogle Scholar
  136. [136]
    Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 2005, 8: 476–483.PubMedGoogle Scholar
  137. [137]
    Acs’ady L, Arabadzisz D, Freund TF. Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide immunoreactive interneurons in the rat hippocampus. Neuroscience 1996, 73: 299–315.CrossRefGoogle Scholar
  138. [138]
    Ishihara T, Shigemoto R, Mori K, Takahashi K, Nagata S. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 1992, 8: 811–819.PubMedCrossRefGoogle Scholar
  139. [139]
    Macsai M, Szabo G, Telegdy G. Vasoactive intestinal polypeptide induces analgesia and impairs the antinociceptive effect of morphine in mice. Neuropeptides 1998, 32: 557–562.PubMedCrossRefGoogle Scholar
  140. [140]
    Ternianov A, Kalfin R, Belcheva I. Antinociceptive effect of vasoactive intestinal peptide (VIP) microinjected into the rats CA1 hippocampal area. C R Acad Bulg Sci 2001, 54: 95–96.Google Scholar
  141. [141]
    Belcheva I, Ivanova M, Tashev R, Belcheva S. Differential involvement of hippocampal vasoactive intestinal peptide in nociception of rats with a model of depression. 2009, Peptides (in press).Google Scholar
  142. [142]
    Soulairac A, Gottesmann CL, Charpentier J. Effects of pain and of several analgesics on cortex, hippocampus and reticular formation of brain stem. Int J Neuropharmacol 1967, 6: 71–81.CrossRefGoogle Scholar
  143. [143]
    Sinnamon HM, Schwartzbaum JS. Dorsal hippocampal unit and EEG responses to rewarding and aversive brain stimulation in rats, Brain Res 1973, 56: 183–202.PubMedCrossRefGoogle Scholar
  144. [144]
    Archer DP, Roth SH. Pharmacodynamics of thiopentone: nocifensive reflex threshold changes correlate with hippocampal electroencephalography. Br J Anaesth 1997, 79: 744–749.PubMedGoogle Scholar
  145. [145]
    Heale VR, Vanderwolf CH. Dentate gyrus and olfactory bulb responses to olfactory and noxious stimulation in urethane anaesthetized rats. Brain Res 1994, 652: 235–242.PubMedCrossRefGoogle Scholar
  146. [146]
    Sinclair JG, Lo GF. Morphine, but not atropine, blocks nociceptor-driven activity in rat dorsal hippocampal neurones. Neurosci Lett 1986, 68: 47–50.PubMedCrossRefGoogle Scholar
  147. [147]
    Yang XF, Xiao Y, Xu MY. Both endogenous and exogenous ACh plays antinociceptive role in the hippocampus CA1 of rats. J Neural Transm 2008, 115: 1–6.PubMedCrossRefGoogle Scholar
  148. [148]
    Ben-Ari Y, Krnjević K, Reinhardt W, Ropert N. Intracellular observations on the disinhibitory action of acetylcholine in the hippocampus. Neuroscience 1981, 6: 2475–2484.PubMedCrossRefGoogle Scholar
  149. [149]
    Krnjeviæ K, Ropert N. Electrophysiological and pharmacological characteristics and facilitation of hippocampal population spikes by stimulation of the medial septum. Neuroscience 1982, 7: 2165–2183.CrossRefGoogle Scholar
  150. [150]
    Khanna S, Sinclair JG. Noxious stimuli produce prolonged changes in the CA1 region of rat hippocampus. Pain 1989, 39: 337–343.PubMedCrossRefGoogle Scholar
  151. [151]
    Leung LS, Yim CY. Intracellular records of theta rhythm in hippocampal CA1 cells of the rat. Brain Res 1986, 367: 323–327.PubMedCrossRefGoogle Scholar
  152. [152]
    Ylinen A, Soltesz I, Bragin A, Penttonen M, Sik A, Buzsaki G. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells and basket cells. Hippocampus 1995, 5: 78–90.PubMedCrossRefGoogle Scholar
  153. [153]
    Zheng F, Khanna S. Hippocampal field CA1 interneuronal nociceptive respionses modulation by medial septal region and morphine. Neuroscience 1999, 93: 45–55.PubMedCrossRefGoogle Scholar
  154. [154]
    Khanna S, Zheng F. Morphine reversed formalin-induced CA1 pyramidal cell suppression via an effect on septohippocampal neural processing. Neuroscience 1999, 89: 61–71.PubMedCrossRefGoogle Scholar
  155. [155]
    Miller SN, Groves PM. Sensory evoked neuronal activity in the hippocampus before and after lesions of the medial septal nuclei. Physiol Behav 1977, 18: 141–146.PubMedCrossRefGoogle Scholar
  156. [156]
    Bland BH. The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol 1986, 26: 1–54.PubMedCrossRefGoogle Scholar
  157. [157]
    Behrends JC, Ten Bruggencate G. Cholinergic modulation of synaptic inhibition in the guinea pig hippocampus in vitro: excitation of GABA-ergic interneurons and inhibition of GABArelease. J Neurophysiol 1993, 69: 626–629.PubMedGoogle Scholar
  158. [158]
    Khanna S. Nociceptive processing in the hippocampus and entorhinal cortex, neurophysiology and pharmacology. In: Schmidt RF, Willis WD Ed. Encyclopedia of Pain. Berlin: Springer-Verlag, 2007, 1369–1374.CrossRefGoogle Scholar
  159. [159]
    Mody I, Pearce RA. Diversity of inhibitory neurotransmission through GABAA receptors. Trends Neurosci 2004, 27: 569–575.PubMedCrossRefGoogle Scholar
  160. [160]
    Tai SK, Huang FD, Moochhala S, Khanna S. Hippocampal theta state in relation to formalin nociception. Pain 2006, 121: 29–42.PubMedCrossRefGoogle Scholar
  161. [161]
    Ko S, Zhuo M. Central plasticity and persistent pain. Drug Discov Today 2004, 1: 101–106.Google Scholar
  162. [162]
    Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000, 288: 1765–1768.PubMedCrossRefGoogle Scholar
  163. [163]
    Zhuo M. Targeting central plasticity: a new direction of finding painkillers. Curr Pharm Des 2005, 11: 2797–2807.PubMedCrossRefGoogle Scholar
  164. [164]
    Zhuo M. Cortical excitation and chronic pain. Trends Neurosci 2008, 31: 199–207.PubMedCrossRefGoogle Scholar
  165. [165]
    Wei F, Xu ZC, Qu Z, Milbrandt J, Zhuo M. Role of EGR1 in hippocampal synaptic enhancement induced by tetanic stimulation and amputation. J Cell Biol 2000, 149: 1325–1333.PubMedCrossRefGoogle Scholar
  166. [166]
    Chen J. The bee venom test: a novel useful animal model for study of spinal coding and processing of pathological pain information. In: Chen J, Chen CAN, Han JS, Willis WD Ed. Experimental Pathological Pain: from Molecules to Brain Function. Beijing: Science Press, 2003, 77–110.Google Scholar
  167. [167]
    Chen J. Processing of different ‘phenotypes’ of pain by different spinal signaling pathways. In: Kumamoto K Ed. Cellular and molecular mechanisms for the modulation of nociceptive transmission in the peripheral and central nervous system. Recent Research Development Series, Kerala: Research SignPost, 2007, 147–165.Google Scholar
  168. [168]
    Chen J, Luo C, Li HL, Chen HS. Primary hyperalgesia to mechanical and heat stimuli following subcutaneous bee venom injection into the plantar surface of hindpaw in the conscious rat: a comparative study with the formalin test. Pain 1999, 83: 67–76.PubMedCrossRefGoogle Scholar
  169. [169]
    Chen YN, Li KC, Li Z, Shang GW, Liu DN, Lu ZM et al. Effects of bee venom peptidergic components on rat pain-related behaviors and inflammation. Neuroscience 2006, 138: 631–640.PubMedCrossRefGoogle Scholar
  170. [170]
    Chen HS, Chen J. Secondary heat, but not mechanical, hyperalgesia induced by subcutaneous injection of bee venom in the conscious rat: effect of systemic MK-801, a non-competitive NMDA receptor antagonist. Eur J Pain 2000, 4: 389–401.PubMedCrossRefGoogle Scholar
  171. [171]
    Lariviere WR, Melzack R. The bee venom test: a new tonic-pain test. Pain 1996, 66: 271–277.PubMedCrossRefGoogle Scholar
  172. [172]
    Pennypacker KR, Hong JS, McMillian MK. Implications of prolonged expression of Fos-related antigens. Trends Pharmacol Sci 1995, 16: 317–321.PubMedCrossRefGoogle Scholar
  173. [173]
    Zimmermann M, Herdegen T. Control of gene transcription by Jun and Fos proteins in the nervous system. Beneficial or harmful molecular mechanisms of neuronal responses to noxious stimulation? Am Pain Soc J 1994, 3: 33–48.Google Scholar
  174. [174]
    Chang Y, Yan LH, Zhang FK, Gong KR, Liu MG, Xiao Y et al. Spatiotemporal characteristics of pain-associated neuronal activities in primary somatosensory cortex induced by peripheral persistent nociception. Neurosci Lett 2008, 448: 134–138.PubMedCrossRefGoogle Scholar
  175. [175]
    Harris JA. Using c-fos as a neural marker of pain. Brain Res Bull 1998, 45: 1–8.PubMedCrossRefGoogle Scholar
  176. [176]
    Herrera DG, Robertson HA. Activation of c-fos in the brain. Prog Neurobiol 1996, 50: 83–107.PubMedCrossRefGoogle Scholar
  177. [177]
    Aloisi AM, Zimmermann M, Herdegen T. Sex-dependent effects of formalin and restraint on c-Fos expression in the septum and hippocampus of the rat. Neuroscience 1997, 81: 951–958.PubMedCrossRefGoogle Scholar
  178. [178]
    Aloisi AM, Ceccarelli I, Herdegen T. Gonadectomy and persistent pain differently affect hippocampal c-Fos expression in male and female rats. Neurosci Lett 2000, 281: 29–32.PubMedCrossRefGoogle Scholar
  179. [179]
    Ceccarelli I, Scaramuzzino A, Aloisi AM. Effects of formalin pain on hippocampal c-Fos expression in male and female rats. Pharmacol Biochem Behav 1999, 64: 797–802.PubMedCrossRefGoogle Scholar
  180. [180]
    Pearse D, Mirza A, Leah J. Jun, Fos and Krox in the hippocampus after noxious stimulation: simultaneous-input-dependent expression and nuclear speckling. Brain Res 2001, 894: 193–208.PubMedCrossRefGoogle Scholar
  181. [181]
    Funahashi M, He YF, Sugimoto T, Matsuo R. Noxious tooth pulp stimulation suppresses c-fos expression in the rat hippocampal formation. Brain Res 1999, 827: 215–220.PubMedCrossRefGoogle Scholar
  182. [182]
    Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 1987, 238: 797–799.PubMedCrossRefGoogle Scholar
  183. [183]
    Malcangio M, Lessmann V. A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors. Trends Pharmacol Sci 2003, 24: 116–121.PubMedCrossRefGoogle Scholar
  184. [184]
    Vaught JL. Substance P antagonists and analgesia: A review of the hypothesis. Life Sci 1988, 43: 1419–1431.PubMedCrossRefGoogle Scholar
  185. [185]
    Hunt SP, Mantyh PW. The molecular dynamics of pain control. Nat Rev Neurosci 2001, 2: 83–91.PubMedCrossRefGoogle Scholar
  186. [186]
    McCarson KE, Krause JE. NK-1 and NK-3 type tachykinin receptor mRNA expression in the rat spinal cord dorsal horn is increased during adjuvant or formalin-induced nociception. J Neurosci 1994, 14: 712–720.PubMedGoogle Scholar
  187. [187]
    Zhou XF, Rush RA. Endogenous brain-derived neurotrophic factor ical excitation and chronic pain. Neuroscience 1996, 74: 945–953.PubMedGoogle Scholar
  188. [188]
    Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 1998, 281: 1640–1645.PubMedCrossRefGoogle Scholar
  189. [189]
    McLean S. Do substance P and the NK1 receptor have a role in depression and anxiety? Curr Pharm Des 2005, 11: 1529–1547.PubMedCrossRefGoogle Scholar
  190. [190]
    Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995, 15: 7539–7547.PubMedGoogle Scholar
  191. [191]
    Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 1992, 588: 341–345.PubMedCrossRefGoogle Scholar
  192. [192]
    Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 1998, 95: 3168–3171.PubMedCrossRefGoogle Scholar
  193. [193]
    Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 2002, 3: 453–462.PubMedCrossRefGoogle Scholar
  194. [194]
    McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci 1999, 22: 105–122.PubMedCrossRefGoogle Scholar
  195. [195]
    Duric V, McCarson KE. Effects of analgesic or antidepressant drugs on pain- or stress-evoked hippocampal and spinal neurokinin-1 receptor and brain-derived neurotrophic factor gene expression in the rat. J Pharmacol Exp Ther 2006, 319: 1235–1243.PubMedCrossRefGoogle Scholar
  196. [196]
    Duric V, McCarson KE. Persistent pain produces stress-like alterations in hippocampal neurogenesis and gene expression. J Pain 2006, 7: 544–555.PubMedCrossRefGoogle Scholar
  197. [197]
    Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry 1999, 46: 1472–1479.PubMedCrossRefGoogle Scholar
  198. [198]
    Jalalvand E, Javan M, Haeri-Rohani A, Ahmadiani A. Stress- and non-stress-mediated mechanisms are involved in pain-induced apoptosis in hippocampus and dorsal lumbar spinal cord in rats. Neuroscience 2008, 157: 446–452.PubMedCrossRefGoogle Scholar
  199. [199]
    Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999, 79: 143–180.PubMedGoogle Scholar
  200. [200]
    Hodge C, Liao J, Slofega M, Guan K, Carter-Su C, Schwartz J. Growth hormone stimulates phosphorylation and activation of elk-1 and expression of c-fos, egr-1, and junB through activation of extracellular signal-regulated kinases 1 and 2. J Biol Chem 1998, 273: 31327–31336.PubMedCrossRefGoogle Scholar
  201. [201]
    Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD. The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1998, 1: 602–609.PubMedCrossRefGoogle Scholar
  202. [202]
    Wang X, Martindale JL, Liu Y, Holbrook NJ. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signaling pathways on cell survival. Biochem J 1998, 333: 230–291.Google Scholar
  203. [203]
    Winder DG, Martin KC, Muzzio RA, Rohrer D, Chruscinski A, Kobilka B et al. ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by β-adrenergic receptors. Neuron 1999, 24: 715–726.PubMedCrossRefGoogle Scholar
  204. [204]
    Dai Y, Iwata K, Fukuoka T, Kondo E, Tokunaga A, Yamanaka H et al. Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization. J Neurosci 2002, 22: 7737–7745.PubMedGoogle Scholar
  205. [205]
    Ji RR. Mitogen-activated protein kinases as potential targets for pain killers. Curr Opin Investig Drugs 2004, 5: 71–75.PubMedGoogle Scholar
  206. [206]
    Ji RR, Baba H, Brenner GJ, Woolf CJ. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 1999, 2: 1114–1119.PubMedCrossRefGoogle Scholar
  207. [207]
    Ji RR, Woolf CJ. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis 2001, 8: 1–10.PubMedCrossRefGoogle Scholar
  208. [208]
    Obata K, Yamanaka H, Tachibana T, Fukuoka T, Tokunaga A, Yoshikawa H et al. Differential activation of extracellular signal-regulated protein kinase in primary afferent neurons regulates brain-derived neurotrophic factor expression after peripheral inflammation and nerve injury. J Neurosci 2003, 23: 4117–4126.PubMedGoogle Scholar
  209. [209]
    Cao FL, Liu MG, Hao J, Li Z, Lu ZM, Chen J. Different roles of spinal p38 and c-Jun N-terminal kinase pathways in bee venominduced multiple pain-related behaviors. Neurosci Lett 2007, 427: 50–54.PubMedCrossRefGoogle Scholar
  210. [210]
    Cui XY, Dai Y, Wang SL, Yamanaka H, Kobayashi K, Obata K et al. Differential activation of p38 and extracellular signal-regulated kinase in spinal cord in a model of bee venom-induced inflammation and hyperalgesia. Mol Pain 2008, 4: 17.PubMedCrossRefGoogle Scholar
  211. [211]
    Guo SW, Liu MG, Long YL, Ren LY, Lu ZM, Yu HY et al. Region- or state-related differences in expression and activation of extracellular signal-regulated kinases (ERKs) in naïve and pain-experiencing rats. BMC Neuroscience 2007, 8: 53.PubMedCrossRefGoogle Scholar
  212. [212]
    Hao J, Liu MG, Yu YQ, Cao FL, Li Z, Lu ZM et al. Roles of peripheral mitogen-activated protein kinases in melittin-induced nociception and hyperalgesia. Neuroscience 2008, 152: 1067–1075.PubMedCrossRefGoogle Scholar
  213. [213]
    Li MM, Yu YQ, Fu H, Xie F, Xu LX, Chen J. Extracellular signaling-regulated kinases mediate the melittin-induced hypersensitivity of spinal neurons to chemical and thermal but not mechanical stimuli. Brain Res Bull 2008, 77: 227–232.CrossRefGoogle Scholar
  214. [214]
    Liu MG, Zhang FK, Guo SW, Zhao LF, An YY, Cui XY et al. Phosphorylation of c-Jun N-terminal kinase isoforms and their different roles in spinal cord dorsal horn and primary somatosensory cortex. Neurosci Lett 2007, 427: 39–43.PubMedCrossRefGoogle Scholar
  215. [215]
    Yu YQ, Chen J. Activation of spinal extracellular signaling-regulated kinases by intraplantar melittin injection. Neurosci Lett 2005, 381: 194–198.PubMedCrossRefGoogle Scholar
  216. [216]
    Yu YQ, Zhao F, Chen J. Activation of ERK1/2 in the primary injury site is required to maintain melittin-enhanced wind-up of rat spinal wide-dynamic-range neurons. Neurosci Lett 2009, 459: 137–141.PubMedCrossRefGoogle Scholar
  217. [217]
    Klamt JG, Prado WA. Antinociception and behavioral changes induced by carbachol microinjected into identified sites of the rat brain. Brain Res 1991, 549: 9–18.PubMedCrossRefGoogle Scholar
  218. [218]
    Aloisi AM, Alnonetti ME, Lodi L, Lupo C, Carli G. Decrease of hippocampal choline acetyltransferase activity induced by formalin pain. Brain Res 1993, 629: 167–170.PubMedCrossRefGoogle Scholar
  219. [219]
    Aloisi AM, Alnonetti ME, Carli G. Formalin-induced changes in adrenocorticotropic hormone and corticosterone plasma levels and hippocampal choline acetyltransferase activity in male and female rats. Neuroscience 1996, 74: 1019–1024.PubMedGoogle Scholar
  220. [220]
    Ceccarelli I, Casamenti F, Massafra C, Pepeu G, Scali C, Aloisi AM. Effects of novelty and pain on behavior and hippocampal extracellular ACh levels in male and female rats. Brain Res 1999, 815: 169–176.PubMedCrossRefGoogle Scholar
  221. [221]
    McMahon SB, Koltzenburg M. Wall and Melzack’s textbook of pain. Oxford, UK: Elsevier Ltd., Churchill Livingstone, 2005.Google Scholar
  222. [222]
    Shih YY, Chen YY, Chen CC, Chen JC, Chang C, Jaw FS. Wholebrain functional magnetic resonance imaging mapping of acute nociceptive responses induced by formalin in rats using atlas registration-based event-related analysis. J Neurosci Res 2008, 86: 1801–1811.PubMedCrossRefGoogle Scholar
  223. [223]
    Shih YY, Chiang YC, Chen JC, Huang CH, Chen YY, Liu RS et al. Brain noc icept ive imaging in rats using (18)ffluorodeoxyglucose small-animal positron emission tomography. Neuroscience 2008, 155: 1221–1226.PubMedCrossRefGoogle Scholar
  224. [224]
    Sakiyama Y, Sato A, Senda M, Ishiwata K, Toyama H, Schmidt RF. Positron emission tomography reveals changes in global and regional cerebral blood flow during noxious stimulation of normal and inflamed elbow joints in anesthetized cats. Exp Brain Res 1998, 118: 439–446.PubMedCrossRefGoogle Scholar
  225. [225]
    Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005, 9: 463–484.PubMedCrossRefGoogle Scholar
  226. [226]
    Peyron R, Laurent B, García-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 2000, 30: 263–288.PubMedCrossRefGoogle Scholar
  227. [227]
    Schneider F, Habel U, Holthusen H, Kessler C, Posse S, Müller-Gärtner HW et al. Subjective ratings of pain correlate with subcortical-limbic blood flow: an fMRI study. Neuropsychobiology 2001, 43: 175–185.PubMedCrossRefGoogle Scholar
  228. [228]
    Bingel U, Quante M, Knab R, Bromm B, Weiller C, Büchel C. Subcortical structures involved in pain processing: evidence from single-trial fMRI. Pain 2002, 99: 313–321.PubMedCrossRefGoogle Scholar
  229. [229]
    Ploghaus A, Narain C, Beckmann CF, Clare S, Bantick S, Wise R et al. Exacerbation of pain by anxiety is associated with activity in a hippocampus network. J Neurosci 2001, 21: 9896–9903.PubMedGoogle Scholar
  230. [230]
    Derbyshire SWG, Jones AKP, Gyulai F, Clark S, Townsend D, Firestone LL. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain 1997, 73: 431–445.PubMedCrossRefGoogle Scholar
  231. [231]
    Hsieh JC, Ståhle-Bäckdahl M, Hägermark Ö, Stone-Elander S, Rosenquist G, Ingvar M. Traumatic nociceptive pain activates the hypothalamus and the periaqueductal gray: a positron emission tomography study. Pain 1995, 64: 303–314.CrossRefGoogle Scholar
  232. [232]
    Peyron R, Garcý’a-Larrea L, Gre’goire MC, Costes N, Convers P, Lavenne F et al. Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 1999, 122: 1765–1779.PubMedCrossRefGoogle Scholar
  233. [233]
    LaMotte RH, Lundberg LE, Torebjörk HE. Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin. J Physiol 1992, 448: 749–764.PubMedGoogle Scholar
  234. [234]
    Simone DA, Baumann TK, LaMotte RH. Dose-dependent pain and mechanical hyperalgesia after intradermal injection of capsaicin. Pain 1989, 38: 99–107.PubMedCrossRefGoogle Scholar
  235. [235]
    Iadarola MJ, Berman KF, Zeffiro TA, Byas-Smith MG, Gracely RH, Max MB et al. Neural activation during acute capsaicinevoked pain and allodynia assessed with PET. Brain 1998, 121: 931–947.PubMedCrossRefGoogle Scholar
  236. [236]
    Miron D, Duncan GH, Bushnell MC. Effects of attention on the intensity and unpleasantness of thermal pain. Pain 1989, 39: 345–352.PubMedCrossRefGoogle Scholar
  237. [237]
    Siedenberg R, Treede RD. Laser-evoked potentials: exogenous and endogenous components. Electroencephalogr Clin Neurophysiol 1996, 100: 240–249.PubMedCrossRefGoogle Scholar
  238. [238]
    Ploghaus A, Tracey I, Clare S, Gati JS, Rawlins JNP, Matthews PM. Learning about pain: the neural substrate of the prediction error for aversive events. Proc Natl Acad Sci 2000, 97: 9281–9286.PubMedCrossRefGoogle Scholar
  239. [239]
    Mackintosh NJ. A theory of attention: variations in the associability of stimuli with reinforcement. Psychol Rev 1975, 82: 276–298.CrossRefGoogle Scholar
  240. [240]
    Recorla RA, Wagner AR. A theory of Pavlovian conditioning: variations in the efectiveness of reinforcement and nonreinforcement. In: Black AH, Proskasy WF Ed. Classical conditioning II: current research and theory. New York: Appleton-Century-Crofts, 1972, 64–99.Google Scholar
  241. [241]
    Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I. Imaging how attention modulates pain in humans using functional MRI. Brain 2002, 125: 310–319.PubMedCrossRefGoogle Scholar
  242. [242]
    Grachev ID, Fredickson BE, Apkarian AV. Dissociating anxiety from pain: mapping the neuronal marker N-acetyl aspartate to perception distinguishes closely interrelated characteristics of chronic pain. Mol Psychiatry 2001, 6: 256–260.PubMedCrossRefGoogle Scholar
  243. [243]
    Al Absi M, Rokke PD. Can anxiety help us tolerate pain? Pain 1991, 46: 43–51.PubMedCrossRefGoogle Scholar
  244. [244]
    Weisenberg M, Aviram O, Wolf Y, Raphaeli N. Relevant and irrelevant anxiety in the reaction to pain. Pain 1984, 20: 371–383.PubMedCrossRefGoogle Scholar
  245. [245]
    Rhudy JL, Meagher MW. Fear and anxiety: divergent effects on human pain thresholds. Pain 2000, 84: 65–75.PubMedCrossRefGoogle Scholar
  246. [246]
    Derbyshire SWG, Jones AKP, Collins M, Feinmann C, Harris M. Cerebral responses to pain in patients suffering acute post-dental extraction pain measured by positron emission tomography (PET). Eur J Pain 1999, 3: 103–113.PubMedCrossRefGoogle Scholar
  247. [247]
    Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and managements. Lancet 1999, 353: 1959–1964.PubMedCrossRefGoogle Scholar
  248. [248]
    Petrovic P, Ingvar M, Stone-Elander S, Petersson KM, Hansson P. A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain 1999, 83: 459–470.PubMedCrossRefGoogle Scholar
  249. [249]
    Rosen SD, Paulesu E, Nihoyannopoulos P, Tousoulis D, Frackowiak RSJ, Frith CD et al. Silent ischemia as a central problem: regional brain activation compared in silent and painful myocardial ischemia. Ann Intern Med 1996, 124: 939–949.PubMedGoogle Scholar
  250. [250]
    Brown MW, Aggleton JP. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci 2001, 2: 51–61.PubMedCrossRefGoogle Scholar
  251. [251]
    Moser MB, Moser EI. Functional differentiation in the hippocampus. Hippocampus 1998, 8: 608–619.PubMedCrossRefGoogle Scholar
  252. [252]
    Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993, 361: 31–39.PubMedCrossRefGoogle Scholar
  253. [253]
    Bennett MR. The concept of long term potentiation of transmission at synapses. Prog Neurobiol 2000, 60: 109–137.PubMedCrossRefGoogle Scholar
  254. [254]
    Malenka RC, Nicoll RA. LTP-A decade of progress? Science 1999, 85: 1870–1874.CrossRefGoogle Scholar
  255. [255]
    Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP do pain and memory share similar mechanisms. Trends Neurosci 2003, 26: 696–705.PubMedCrossRefGoogle Scholar
  256. [256]
    Ikeda H, Heinke B, Ruscheweyh R, Sandkühler J. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 2003, 299: 1237–1240.PubMedCrossRefGoogle Scholar
  257. [257]
    Sandkühler J. Understanding LTP in pain pathways. Mol Pain 2007, 3: 9.PubMedCrossRefGoogle Scholar
  258. [258]
    Heusler P, Boehmer G. Platelet-activating factor contributes to the induction of long-term potentiation in the rat somatosensory cortex in vitro. Brain Res 2007, 1135: 85–91.PubMedCrossRefGoogle Scholar
  259. [259]
    Wei F, Qiu CS, Liauw J, Robinson DA, Ho N, Chatila T et al. Calcium-calmodulin-dependent protein kinase IV is required for fear memory. Nat Neurosci 2002, 5: 573–579.PubMedCrossRefGoogle Scholar
  260. [260]
    Ko S, Zhao MG, Toyoda H, Qiu CS, Zhuo M. Altered behavioral responses to noxious stimuli and fear in glutamate receptor 5 (GluR5)- or GluR6-deficient mice. J Neurosci 2005, 25: 977–984.PubMedCrossRefGoogle Scholar
  261. [261]
    Zhao MG, Toyoda H, Lee YS, Wu LJ, Ko SW, Zhang XH et al. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron 2005, 47: 859–872.PubMedCrossRefGoogle Scholar
  262. [262]
    Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol 2009, 87: 81–97.PubMedCrossRefGoogle Scholar
  263. [263]
    May A. Chronic pain may change the structure of the brain. Pain 2008, 137: 7–15.PubMedCrossRefGoogle Scholar
  264. [264]
    Edwards L, Pearce S, Collett BJ, Pugh R. Selective memory for sensory and affective information in chronic pain and depression. Br J Clin Psychol 1992, 31: 239–248.PubMedGoogle Scholar
  265. [265]
    Pauli P, Alpers GW. Memory bias in patients with hypochondriasis and somatoform pain disorder. J Psychosom Res 2002, 52: 45–53.PubMedCrossRefGoogle Scholar
  266. [266]
    Pearce SA, Isherwood S, Hrouda D, Richardson PH, Erskine A, Skinner J. Memory and pain: tests of mood congruity and state dependent learning in experimentally induced and clinical pain. Pain 1990, 43: 187–193.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute for Biomedical Sciences of PainCapital Medical UniversityBeijingChina
  2. 2.Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu HospitalThe Fourth Military Medical UniversityXi’anChina

Personalised recommendations