Neuroscience Bulletin

, 24:105 | Cite as

Alzheimer’s disease: epidemiology, genetics, and beyond

  • Xiao-Ping Wang (王晓平)
  • Hong-Liu Ding (丁洪流)


Alzheimer’s disease (AD) is an increasing epidemic threatening public health. Both men and women are susceptible to the disease although women are at a slightly higher risk. The prevalence of AD rises exponentially in elderly people from 1% at age of 65 to approximately 40%–50% by the age of 95. While the cause of the disease has not been fully understood, genetics plays a role in the onset of the disease. Mutations in three genes (APP, PSEN1, and PSEN2) have been found to cause AD and APOE4 allele increases the risk of the disease. As human genomic research progresses, more genes have been identified and linked with AD. Genetic screening tests for persons at high risk of AD are currently available and may help them as well as their families better prepare for a later life with AD.


Alzheimer’s disease amyloid precursor protein presenilin APOE 



阿尔茨海默氏病是一种不断增长的威胁公众健康的流行疾患. 男女两性均对此病易感, 以女性稍甚. 该病患病率在老年人群中呈指数上升, 65 岁时患病率约1%, 至95 岁时达到40%–50%. 尽맜病因尚未被完全了解, 遗传因素已被确认在其发病中扮演重要角色. 发生在三个基因(APP, PSEN1, PSEN2)中的突变可导致该病, 而APOE4等位基因与患病的危险增加有关. 随着人类基因组研究的进展, 可能会有更多与该病相关的基因被发现. 目前, 应用遗传筛选测试, 可以帮助阿尔茨海默氏病的高危人群更好地准备和应对未来可能发生的疾病.


阿尔茨海默氏病 β-淀粉样前体蛋白 早老素 载脂蛋白 

CLC number



  1. [1]
    Helmer C, Joly P, Letenneur L, Commenges D, Dartigues JF. Mortality with dementia: results from a French prospective community-based cohort. Am J Epidemiol 2001, 154: 642–648.PubMedCrossRefGoogle Scholar
  2. [2]
    Aronson MK, Ooi WL, Geva DL, Masur D, Blau A, Frishman W. Dementia: agedependent incidence, prevalence, and mortality in the old. Arch Intern Med 1991, 151: 989–992.PubMedCrossRefGoogle Scholar
  3. [3]
    Pinsky LE, Burke W, Bird TD. Why should primary care physicians know about the genetics of dementia? West J Med 2001, 175: 412–416.PubMedCrossRefGoogle Scholar
  4. [4]
    Ernst RL, Hay JW. The U.S. Economic and Social Costs of Alzheimer’s Disease Revisited. Am J Public Health 1994, 84: 1261–1264.PubMedGoogle Scholar
  5. [5]
    Koppel R. Alzheimer’s Disease: The Costs to U.S. Businesses in 2002. Washington, D.C.: Alzheimer’s Association, 2002.Google Scholar
  6. [6]
    Joachim CL, Morris JH, Selkoe DJ. Clinically diagnosed Alzheimer’s disease: autopsy results in 150 cases. Ann Neurol 1988, 24: 50–56.PubMedCrossRefGoogle Scholar
  7. [7]
    Mayeux R, Saunders AM, Shea S, Mirra S, Evans D, Roses AD, et al. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s Disease Centers Consortium on Apolipoprotein E and Alzheimer’s Disease. N Engl J Med 1998, 338: 506–511.PubMedCrossRefGoogle Scholar
  8. [8]
    Clark CM, Ewbank D, Lee VM-Y, Trojanowski JQ. Molecular pathology of Alzheimer’s disease: neuronal cytoskeletal abnormalities. In: Growdon JH, Rossor MN, eds. The dementias. Vol. 19 of Blue books of practical neurology. Boston: Butterworth-Heinemann, 1998, 285–304.Google Scholar
  9. [9]
    Hutton M, Perez-Tur J, Hardy J. Genetics of Alzheimer’s disease. Essays Biochem 1998, 33: 117–131.PubMedGoogle Scholar
  10. [10]
    Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer Disease in the U.S. Population: Prevalence Estimates Using the 2000 Census. Arch Neurol 2003, 60: 1119–1122.PubMedCrossRefGoogle Scholar
  11. [11]
    Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med 2003, 348: 1356–1364.PubMedCrossRefGoogle Scholar
  12. [12]
    Farrer LA, O’sullivan DM, Cupples LA, Growdon JH, Myers RH. Assessment of genetic risk for Alzheimer’s disease among first-degree relatives. Ann Neurol 1989, 25: 485–493.PubMedCrossRefGoogle Scholar
  13. [13]
    Silverman JM, Li G, Zaccario ML, Smith CJ, Schmeidler J, Mohs RC, et al. Patterns of risk in first-degree relatives of patients with Alzheimer’s disease. Arch Gen Psychiatry 1994, 51: 577–586.PubMedGoogle Scholar
  14. [14]
    Rocchi A, Pellegrini S, Siciliano G, Murri L. Causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res Bull 2003, 61: 1–24.PubMedCrossRefGoogle Scholar
  15. [15]
    Blacker D, Wilcox MA, Laird NM, Rodes L, Horvath SM, Go RC, et al. Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet 1998, 19: 357–360.PubMedCrossRefGoogle Scholar
  16. [16]
    Dodel RC, Du Y, Bales KR, Gao F, Eastwood B, Glazier B, et al. Alpha2 macroglobulin and the risk of Alzheimer’s disease. Neurology 2000, 54: 438–442.PubMedGoogle Scholar
  17. [17]
    Gibson AM, Singleton AB, Smith G, Woodward R, McKeith IG, Perry RH, et al. Lack of association of the alpha2-macroglobulin locus on chromosome 12 in AD. Neurology 2000, 54: 433–438.PubMedGoogle Scholar
  18. [18]
    Depboylu C, Lohmuller F, Du Y, Riemenschneider M, Kurz A, Gasser T, et al. Alpha2-macroglobulin, lipoprotein receptor-related protein and lipoprotein receptor-associated protein and the genetic risk for developing Alzheimer’s disease. Neurosci Lett 2006, 400: 187–190.PubMedCrossRefGoogle Scholar
  19. [19]
    Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL, et al. GAB2 alleles modify Alzheimer’s risk in APOE varepsilon4 carriers. Neuron 2007, 54: 713–720.PubMedCrossRefGoogle Scholar
  20. [20]
    Li YJ, Oliveira SA, Xu P, Martin ER, Stenger JE, Scherzer CR, et al. Glutathione S-transferase omega-1 modifiesage-at-onset of Alzheimer disease and Parkinson disease. Hum Mol Genet 2003, 12: 3259–3267.PubMedCrossRefGoogle Scholar
  21. [21]
    Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 2007, 39:168–177.PubMedCrossRefGoogle Scholar
  22. [22]
    Campion D, Flaman JM, Brice A, Hannequin D, Dubois B, Martin C, et al. Mutations of the presenilin I gene in families with early-onset Alzheimer’s disease. Hum Mol Genet 1995, 4: 2373–2377.PubMedCrossRefGoogle Scholar
  23. [23]
    Sherrington R, Froelich S, Sorbi S, Campion D, Chi H, Rogaeva EA, et al. Alzheimer’s disease associated with mutations in presenilin 2 is rare and variably penetrant. Hum Mol Genet 1996, 5: 985–988.PubMedCrossRefGoogle Scholar
  24. [24]
    Janssen JC, Beck JA, Campbell TA, Dickinson A, Fox NC, Harvey RJ, et al. Early onset familial Alzheimer’s disease: Mutation frequency in 31 families. Neurology 2003, 60: 235–239.PubMedGoogle Scholar
  25. [25]
    Raux G, Guyant-Marechal L, Martin C, Bou J, Penet C, Brice A, et al. Molecular diagnosis of autosomal dominant early onset Alzheimer’s disease: an update. J Med Genet 2005, 42: 793–795.PubMedCrossRefGoogle Scholar
  26. [26]
    Rocca WA, Hofman A, Brayne C, Breteler MM, Clarke M, Copeland JR, et al. Frequency and distribution of Alzheimer’s disease in Europe: a collaborative study of 1980–1990 prevalence findings. The EURODEM-Prevalence Research Group. Ann Neurol 1991, 30: 381–390.PubMedCrossRefGoogle Scholar
  27. [27]
    Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 1999, 65: 664–670.PubMedCrossRefGoogle Scholar
  28. [28]
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261: 921–923.PubMedCrossRefGoogle Scholar
  29. [29]
    Jarvik G, Larson EB, Goddard K, Schellenberg GD, Wijsman EM. Influence of apolipoprotein E genotype on the transmission of Alzheimer disease in a community-based sample. Am J Hum Genet 1996, 58: 191–200.PubMedGoogle Scholar
  30. [30]
    D’Introno A, Solfrizzi V, Colacicco AM, Capurso C, Amodio M, Todarello O, et al. Current knowledge of chromosome 12 susceptibility genes for late-onset Alzheimer’s disease. Neurobiol Aging 2006, 27: 1537–1553.PubMedCrossRefGoogle Scholar
  31. [31]
    Grupe A, Li Y, Rowland C, Nowotny P, Hinrichs AL, Smemo S, et al. A scan of chromosome 10 identifies a novel locus showing strong association with late-onset Alzheimer disease. Am J Hum Genet 2006, 78: 78–88.PubMedCrossRefGoogle Scholar
  32. [32]
    Riemenschneider M, Konta L, Friedrich P, Schwarz S, Taddei K, Neff F, et al. A functional polymorphism within plasminogen activator urokinase (PLAU) is associated with Alzheimer’s disease. Hum Mol Genet 2006, 15: 2446–2456.PubMedCrossRefGoogle Scholar
  33. [33]
    Scott WK, Hauser ER, Schmechel DE, Welsh-Bohmer KA, Small GW, Roses AD, et al. Ordered-subsets linkage analysis detects novel Alzheimer disease Loci on chromosomes 2q34 and 15q22. Am J Hum Genet 2003, 73: 1041–1051.PubMedCrossRefGoogle Scholar
  34. [34]
    Li Y, Grupe A, Rowland C, Nowotny P, Kauwe JS, Smemo S, et al. DAPK1 variants are associated with Alzheimer’s disease and allele-specific expression. Hum Mol Genet 2006, 15: 2560–2568.PubMedCrossRefGoogle Scholar
  35. [35]
    Wijsman EM, Daw EW, Yu CE, Payami H, Steinbart EJ, Nochlin D, et al. Evidence for a novel late-onset Alzheimer disease locus on chromosome 19p13.2. Am J Hum Genet 2004, 75: 398–409.PubMedCrossRefGoogle Scholar
  36. [36]
    Rademakers R, Cruts M, Sleegers K, Dermaut B, Theuns J, Aulchenko Y, et al. Linkage and association studies identify a novel locus for Alzheimer disease at 7q36 in a Dutch population-based sample. Am J Hum Genet 2005, 77: 643–652.PubMedCrossRefGoogle Scholar
  37. [37]
    Bertram L, Hiltunen M, Parkinson M, Ingelsson M, Lange C, Ramasamy K, et al. Family-based association between Alzheimer’s disease and variants in UBQLN1. N Engl J Med 2005, 352: 884–894.PubMedCrossRefGoogle Scholar
  38. [38]
    Bensemain F, Chapuis J, Tian J, Shi J, Thaker U, Lendon C, et al. Association study of the Ubiquilin gene with Alzheimer’s disease. Neurobiol Dis 2006, 22: 691–693.PubMedCrossRefGoogle Scholar
  39. [39]
    Kamboh MI, Minster RL, Feingold E, DeKosky ST. Genetic association of ubiquilin with Alzheimer’s disease and related quantitative measures. Mol Psychiatry 2006, 11: 273–279.PubMedCrossRefGoogle Scholar
  40. [40]
    Smemo S, Nowotny P, Hinrichs AL, Kauwe JS, Cherny S, Erickson K, et al. Ubiquilin 1 polymorphisms are not associated with lateonset Alzheimer’s disease. Ann Neurol 2006, 59: 21–26.PubMedCrossRefGoogle Scholar
  41. [41]
    Liu F, Arias-Vasquez A, Sleegers K, Aulchnko YS, Kayser M, Sanchex-Juan P, et al. A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population. Am J Hum Genet 2007, 81: 17–31.PubMedCrossRefGoogle Scholar
  42. [42]
    Raiha I, Kaprio J, Koskenvuo M, Rajala T, Sourander L. Environmental differences in twin pairs discordant for Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1998, 65: 785–787.PubMedCrossRefGoogle Scholar
  43. [43]
    Pedersen NL, Gatz M, Berg S, Johansson B. How heritable is Alzheimer’s disease late in life? Findings from Swedish twins. Ann Neurol 2004, 55: 180–185.PubMedCrossRefGoogle Scholar
  44. [44]
    Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 2006, 63: 168–174.PubMedCrossRefGoogle Scholar
  45. [45]
    Pedersen NL, Posner SF, Gatz M. Multiple-threshold models for genetic influences on age of onset for Alzheimer disease: findings in Swedish twins. Am J Med Genet 2001, 105: 724–728.PubMedCrossRefGoogle Scholar
  46. [46]
    Borenstein AR, Copenhaver CI, Mortimer JA. Early-life risk factors for Alzheimer disease. Alzheimer Dis Assoc Disord 2006, 20: 63–72.PubMedCrossRefGoogle Scholar
  47. [47]
    Breitner JC. APOE genotyping and Alzheimer’s disease. Lancet 1996, 347: 1184–1185.PubMedCrossRefGoogle Scholar
  48. [48]
    Breitner JC, Wyse BW, Anthony JC, Welsh-Bohmer KA, Steffens DC, Norton MC, et al. APOE-epsilon4 count predicts age when prevalence of AD increases, then declines: the Cache County Study. Neurology 1999, 53: 321–331.PubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Xiao-Ping Wang (王晓平)
    • 1
  • Hong-Liu Ding (丁洪流)
    • 2
  1. 1.Shanghai First People’s HospitalShanghai Jiaotong UniversityShanghaiChina
  2. 2.Meyers Primary Care InstituteUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations