Neuroscience Bulletin

, Volume 23, Issue 1, pp 58–65

Is Glucagon-like peptide-1, an agent treating diabetes, a new hope for Alzheimer’s disease?

Minireview

Abstract

Glucagon-like peptide-1 (GLP-1) has been endorsed as a promising and attractive agent in the treatment of type 2 diabetes mellitus (T2DM). Both Alzheimer’s disease (AD) and T2DM share some common pathophysiologic hallmarks, such as amyloid β(Aβ), phosphoralation of tau protein, and glycogen synthase kinase-3. GLP-1 possesses neurotropic properties and can reduce amyloid protein levels in the brain. Based on extensive studies during the past decades, the understanding on AD leads us to believe that the primary targets in AD are the Aβ and tau protein. Combine these findings, GLP-1 is probably a promising agent in the therapy of AD. This review was focused on the biochemistry and physiology of GLP-1, communities between T2DM and AD, new progresses of GLP-1 in treating T2MD and improving some pathologic hallmarks of AD.

Keywords

glucagon-like peptide 1 type 2 diabetes mellitus Alzheimer’s disease 

胰高血糖素样多肽1 — 治疗糖尿病的多肽, 是治疗阿尔茨海默病的新希望?

摘要

胰高血糖素样多肽1(Glucagon-like peptide, GLP)已被证明是有前景的II型糖尿病(Type 2 diabetes mellitus, T2DM)治疗剂。 阿尔茨海默病(Alzheimer’s disease, AD)和T2DM具有在淀粉样蛋 β(Amyloid β, Aβ), tau 蛋白磷酸化和葡萄糖合成酶3等方面的共同的病理生理特征。 GLP-1 具有神经营养特性, 并能降低脑淀粉样蛋白水平。 过去几十年对AD的广泛研究使我们认识到对其治疗应针对Aβ 和 tau 蛋白。 总结这些之后发现, GLP-1 可能有希望用于治疗AD。 本文综述了GLP-1的生物化学和生理学特征, T2DM和AD的共同的病理生理特征, 以及GLP-1 在治疗T2MD和改善AD某些病理变化方面的新进展。

关键词

胰高血糖素样多肽1 II 型糖尿病 阿尔茨海默病 

CLC number

R742.8+

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Holst JJ. Glucagonlike peptide 1: a newly discovered gastrointestinal hormone. Gastroenterology 1994, 107:1848–1855.PubMedGoogle Scholar
  2. [2]
    Knudsen LB. Glucagon-like peptide-1: the basis of a new class of treatment for type 2 diabetes. J Med Chem 2004, 47: 4128–4134.PubMedCrossRefGoogle Scholar
  3. [3]
    Gutniak M, Orskov C, Holst JJ, Ahren B, Efendic S. Antidiabetogenic effect of glucagon-like peptide-1 (7–36) amide in normal subjects and patients with diabetes mellitus. N Engl J Med 1992, 326: 1316–1322.PubMedCrossRefGoogle Scholar
  4. [4]
    Creutzfeldt W. The incretin concept today. Diabetologia 1979, 16: 75–85.PubMedCrossRefGoogle Scholar
  5. [5]
    Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 2000, 141: 4600–4605.PubMedCrossRefGoogle Scholar
  6. [6]
    Hui H, Zhao X, Perfetti R. Structure and function studies of glucagon-like peptide-1 (GLP-1): the designing of a novel pharmacological agent for the treatment of diabetes. Diabetes Metab Res Rev 2005, 21: 313–331.PubMedCrossRefGoogle Scholar
  7. [7]
    Perry T, Lahiri DK, Sambamurti K, Chen D, Mattson MP, Egan JM, et al. Glucagon-like peptide-1 decreases endogenous amyloid β peptide (Aβ) levels and protects hippocampal neurons from death induced by Aβ and iron. J Neurosci Res 2003, 72: 603–612.PubMedCrossRefGoogle Scholar
  8. [8]
    Satoh F, Beak SA, Small CJ, Falzon M, Ghatei MA, Bloom SR, et al. Characterization of human and rat glucagon-like peptide-1 receptors in the neurointermediate lobe: lack of coupling to either stimulation or inhibition of adenylyl cyclase. Endocreology 2000, 141: 1301–1309.CrossRefGoogle Scholar
  9. [9]
    Perry T, Greig NH. The glucagon-like peptides: a new genre in therapeautic targets for intervention in Alzheimer’s disease. J Alzheimer Dis 2002, 4: 487–496.Google Scholar
  10. [10]
    Perry T, Greig NH. A new Alzheimer’s disease interventive strategy: GLP-1. Curr Drug Targets 2004, 5: 565–571.PubMedCrossRefGoogle Scholar
  11. [11]
    Perry T, Greig NH. Enhancing central nervous system endogenous GLP-1 receptor pathways for intervention in Alzheimer’s disease. Curr Alzheimer Res 2005, 2: 377–385.PubMedCrossRefGoogle Scholar
  12. [12]
    Bell GI. The glucagon superfamily: precursor structure and gene organization. Peptides 1986, 7(Suppl 1): 27–36.PubMedCrossRefGoogle Scholar
  13. [13]
    Suda K, Takahashi H, Fukase N, Manaka H, Tominaga M, Sasaki H. Distribution and molecular forms of glucagon-like peptide in the dog. Life Sci 1989, 45: 1793–1798.PubMedCrossRefGoogle Scholar
  14. [14]
    Rouille Y, Martin S, Steiner DF. Differential Processing of Proglucagon by the Subtilisin-like Prohormone Convertases PC2 and PC3 to Generate either Glucagon or Glucagon-like Peptide. J Biol Chem 1995, 270: 26488–26496.PubMedCrossRefGoogle Scholar
  15. [15]
    Wettergren A, Pridal L, Wojdemann M, Holst JJ. Amidated and non-amidated glucagon-like peptide-1 (GLP-1): non-pancreatic effects (cephalic phase acid secretion) and stability in plasma in humans. Regul Pept 1998, 77: 83–87.PubMedCrossRefGoogle Scholar
  16. [16]
    Nauck MA. Glucagon-like peptide 1 (GLP-1): a potent gut hormone with a possible therapeutic perspective. Acta Diabetol 1998, 35: 117–129.PubMedCrossRefGoogle Scholar
  17. [17]
    Demuth HU, McIntosch CH, Pederson RA. Type 2 diabetestherapy with dipeptidyl peptidase IV inhibitors. Biochim Biophys Acta 2005, 1751: 33–45.PubMedGoogle Scholar
  18. [18]
    Knudsen LB, Pridal L. Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7–36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 1996, 318: 429–435.PubMedCrossRefGoogle Scholar
  19. [19]
    Schmidtler J, Schepp W, Janczewska I, Weigert N, Furlinger C, Schusdziarra V, et al. GLP-1-(7–36) amide,-(1-37), and-(1-36) amide: potent cAMP-dependent stimuli of rat parietal cell function. Am J Physiol 1991, 260: G940–G950.PubMedGoogle Scholar
  20. [20]
    Nauck MA, Weber I, Bach I, Richter S, Orskov C, Holst JJ, et al. Normalization of fasting glycaemia by intravenous GLP-1 [(7–36 amide) or (7–37)] in type 2 diabetes patients. Diabet Med 1988, 15: 937–945.CrossRefGoogle Scholar
  21. [21]
    Deacon CF, Plamboeck A, Moller S, Holst JJ. GLP-1-(9-36) amide reduces blood glucose in anesthetized pigs by a mechanism that does not involve insulin secretion. Am J Physiol Endocrinol Metab 2002, 282: E873–E879.PubMedGoogle Scholar
  22. [22]
    Rachman J, Gribble FM, Barrow BA, Levy JC, Buchanan KD, Turner RC. Normalization of insulin responses to glucose by overnight infusion of glucagon-like peptide 1 (7–36) amide in patients with NIDDM. Diabetes 1996, 45: 1524–1530.PubMedCrossRefGoogle Scholar
  23. [23]
    Nauck MA, Kleine N, Orskov C, Holst JJ, Willms B, Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glu cagon-like peptide 1 (7–36 amide) in type 2 (non-insulindependent) diabetic patients. Diabetologia 1993, 36: 741–744.PubMedCrossRefGoogle Scholar
  24. [24]
    Willms B, Werner J, Holst JJ, Orskov C, Creutzfeldt W, Nauck MA. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7–36) amide in type 2 (noninsulin-dependent) diabetic patients. J Clin Endocrinol Metab 1996, 81: 327–332.PubMedCrossRefGoogle Scholar
  25. [25]
    Toft-Nielsen MB, Madsbad S, Holst JJ. Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care 1999, 22: 1137–1143.PubMedCrossRefGoogle Scholar
  26. [26]
    Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 2002, 359: 824–830.PubMedCrossRefGoogle Scholar
  27. [27]
    Drucker DJ. Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 2002, 122: 531–544.PubMedCrossRefGoogle Scholar
  28. [28]
    Ahren B. Gut peptides and type 2 diabetes mellitus treatment. Curr Diab Rep 2003, 3: 365–372.PubMedCrossRefGoogle Scholar
  29. [29]
    Huang THJ, Brubaker PL. Synthesis and secretion of glucagon-like peptide-1 by fetal rat intestinal cells in culture. Endocrine 1995, 3: 499–503.CrossRefGoogle Scholar
  30. [30]
    Burcelin R, Da Costa A, Drucker D, Thorens B. Glucose competence of the hepatoportal vein sensor requires the presence of an activated glucagon-like peptide-1 receptor. Diabetes 2001, 50: 1720–1728.PubMedCrossRefGoogle Scholar
  31. [31]
    Dardevet D, Moore MC, DiCostanzo CA, Farmer B, Neal DW, Snead W, et al. Insulin secretion-independent effects of GLP-1 on canine liver glucose metabolism do not involve portal vein GLP-1 receptors. Am J Physiol Gastrointest Liver Physiol 2005, 289: G806–G814.PubMedCrossRefGoogle Scholar
  32. [32]
    Holst JJ, Deacon CF. Glucagon-like peptide-1 mediates the therapeutic actions of DPP-IV inhibitors. Diabetologia 2005, 48: 612–615.PubMedCrossRefGoogle Scholar
  33. [33]
    Ionut V, Hucking K, Liberty IF, Bergman RN. Synergistic effect of portal glucose and glucagon-like peptide-1 to lower systemic glucose and stimulate counter-regulatory hormones. Diabetologia 2005, 48: 967–975.PubMedCrossRefGoogle Scholar
  34. [34]
    Combettes MM. GLP-1 and type 2 diabetes: physiology and new clinical advances. Current Opin Pharmacol 2006, 6: 598–605.CrossRefGoogle Scholar
  35. [35]
    Raufman JP. Bioactive peptides from lizard venoms. Regul Pept 1996, 61: 1–18.PubMedCrossRefGoogle Scholar
  36. [36]
    Stoffel M, Espinosa R 3rd, Le Beau MM, Bell GI. Human glucagon-like peptide-1 receptor gene. Localization to chromosome band 6p21 by fluorescence in situ hybridization and linkage of a highly polymorphic simple tandem repeat DNA polymorphism to other markers on chromosome 6. Diabetes 1993, 42: 1215–1218.PubMedCrossRefGoogle Scholar
  37. [37]
    Campos RV, Lee YC, Drucker DJ. Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology 1994, 134: 2156–2164.PubMedCrossRefGoogle Scholar
  38. [38]
    Wheeler MB, Lu M, Dillon JS, Leng XH, Chen C, Boyd AE. Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology 1993, 133: 57–62.PubMedCrossRefGoogle Scholar
  39. [39]
    Wilmen A, Van Eyll B, Goke B, Goke R. Five out of six tryptophan residues in the N-terminal extracellular domain of the rat GLP-1 receptor are essential for its ability to bind GLP-1. Peptides 1997, 18: 301–305.PubMedCrossRefGoogle Scholar
  40. [40]
    Salapatek AM, MacDonald PE, Gaisano HY, Wheeler MB. Mutations to the third cytoplasmic domain of the glucagon-like peptide 1 (GLP-1) receptor can functionally uncouple GLP-1-stimulated insulin secretion in HIT-T15 cells. Mol Endocrinol 1999, 13: 1305–1317.PubMedCrossRefGoogle Scholar
  41. [41]
    Margolis RU, Altszuler N. Insulin in the cerebrospinal fluid. Nature 1967, 215: 1375–1376.PubMedCrossRefGoogle Scholar
  42. [42]
    Havrankova J, Schmechel D, Roth J, Brownstein M. Identification of insulin in rat brain. Proc Natl Acad Sci USA 1978, 75: 5737–5741.PubMedCrossRefGoogle Scholar
  43. [43]
    Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature 1978, 272: 827–829.PubMedCrossRefGoogle Scholar
  44. [44]
    Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 2006, 27: 570–575.PubMedCrossRefGoogle Scholar
  45. [45]
    Churcher I. Tau therapeutic strategies for the treatment of Alzheimer’s disease. Curr Top Med Chem 2006, 6: 579–595.PubMedCrossRefGoogle Scholar
  46. [46]
    Roche E, Reig JA, Campos A, Paredes B, Isaac JR, Lim S, et al. Insulin-secreting cells derived from stem cells: clinical perspectives, hypes and hopes. Transpl Immunol 2005, 15: 113–129.PubMedCrossRefGoogle Scholar
  47. [47]
    Mosselman S, Hoppener JW, Zandberg J, van Mansfeld AD, Geurts van Kessel AH, Lips CJ, et al. Islet amyloid polypeptide: identification and chromosomal localization of the human gene. FEBS Lett 1988, 239: 227–232.PubMedCrossRefGoogle Scholar
  48. [48]
    Hoppener JW, Ahren B, Lips CJ. Islet amyloid and type 2 diabetes mellitus. N Engl J Med 2000, 343: 411–419.PubMedCrossRefGoogle Scholar
  49. [49]
    Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004, 53: 474–481.PubMedCrossRefGoogle Scholar
  50. [50]
    Razay G, Wilcock GK. Hyperinsulinaemia and Alzheimer’s disease. Age Ageing 1994, 23: 396–399.PubMedCrossRefGoogle Scholar
  51. [51]
    Leibson CL, Rocca WA, Hanson VA, Cha R, Kokmen E, O’Brien PC, et al. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 1997, 145: 301–308.PubMedGoogle Scholar
  52. [52]
    Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999, 53: 1937–1942.PubMedGoogle Scholar
  53. [53]
    Stolk RP, Breteler MM, Ott A, Pols HA, Lamberts SW, Grobbee DE, et al. Insulin and cognitive function in an elderly population. The Rotterdam Study. Diabetes Care 1997, 20: 792–795.CrossRefGoogle Scholar
  54. [54]
    Watson GS, Peskind ER, Asthana S, Purganan K, Wait C, Chapman D, et al. Insulin increases CSF Aâ42 levels in normal older adults. Neurology 2003, 60: 1899–1903.PubMedGoogle Scholar
  55. [55]
    Wolozin B. Cholesterol and Alzheimer’s disease. Biochem Soc Trans 2002, 30: 525–529.PubMedCrossRefGoogle Scholar
  56. [56]
    Reaven GM, Bernstein R, Davis B, Olefsky JM. Nonketotic diabetes mellitus: insulin deficiency or insulin resistance? Am J Med 1976, 60: 80–88.PubMedCrossRefGoogle Scholar
  57. [57]
    Janson J, Soeller WC, Roche PC, Nelson RT, Torchia AJ, Kreutter DK, et al. Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci USA 1996, 93: 7283–7288.PubMedCrossRefGoogle Scholar
  58. [58]
    Verchere CB, D’Alessio DA, Palmiter RD, Weir GC, Bonner-Weir S, Baskin DG, et al. Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc Natl Acad Sci USA 1996, 93: 3492–3496.PubMedCrossRefGoogle Scholar
  59. [59]
    Gebre-Medhin S, Mulder H, Pekny M, Westermark G, Tornell J, Westermark P, et al. Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem Biophys Res Commun 1998, 250: 271–277.PubMedCrossRefGoogle Scholar
  60. [60]
    Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid â-protein, and the â-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 2003, 100: 4162–4167.PubMedCrossRefGoogle Scholar
  61. [61]
    Freude S, Plum L, Schnitker J, Leeser U, Udelhoven M, Krone W, et al. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes 2005, 54: 3343–3348.PubMedCrossRefGoogle Scholar
  62. [62]
    Sivaprakasam P, Xie A, Doerksen RJ. Probing the physicochemical and structural requirements for glycogen synthase kinase-3α inh ib it ion: 2D-QSAR for 3-ani li no-4-phenylmaleimides. Bioorg Med Chem 2006, 14: 8210–8218.PubMedCrossRefGoogle Scholar
  63. [63]
    Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3á regulates production of Alzheimer’s disease amyloid-â peptides. Nature 2003, 423: 435–439.PubMedCrossRefGoogle Scholar
  64. [64]
    Bhat RV, Budd Haeberlein SL, Avila J. Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem 2004, 89: 1313–1317.PubMedCrossRefGoogle Scholar
  65. [65]
    Behme MT, Dupre J, McDonald TJ. Glucagon-like peptide 1 improved glycemic control in type 1 diabetes. BMC Endocr Disord 2003, 3: 3–12.PubMedCrossRefGoogle Scholar
  66. [66]
    Gromada J, Holst JJ, Rorsman P. Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflugers Arch 1998, 435: 583–594.PubMedCrossRefGoogle Scholar
  67. [67]
    Mattson MP, Lovell MA, Furukawa K, Markesbery WR. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J Neurochem 1995, 65: 1740–1751.PubMedCrossRefGoogle Scholar
  68. [68]
    Kumar M, Hunag Y, Glinka Y, Prud’homme GJ, Wang Q. Gene therapy of diabetes using a novel GLP-1/IgG1-Fc fusion construct normalizes glucose levels in db/db mice. Gene Therapy 2006, Aug 31. Epub ahead of print.Google Scholar
  69. [69]
    Sinclair EM, Drucker DJ. Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase IV inhibitors: new therapeutic agents for the treatment of type 2 diabetes. Curr Opin Endocrinol Diabet 2005, 12: 146–151.CrossRefGoogle Scholar
  70. [70]
    Holst JJ. Glucagon-like peptide-1: from extract to agent. The Claude Bernard Lecture 2005. Diabetologia 2006, 49: 253–260.PubMedCrossRefGoogle Scholar
  71. [71]
    Gautier JF, Fetita S, Sobngwi E, Salaun-Martin C. Biological actions of the incretins GIP and GLP-1 and therapeutic perspectives in patients with type 2 diabetes. Diabetes Metab 2005, 31: 233–242.PubMedCrossRefGoogle Scholar
  72. [72]
    Imeryuz N, Yegen BC, Bozkurt A, Coskun T, Villanueva-Penacarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol 1997, 273: G920–G927.PubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences 2007

Authors and Affiliations

  1. 1.Gerontology InstituteShanxi Medical UniversityTaiyuanChina

Personalised recommendations