Genes & Nutrition

, 9:394

Nutri-informatics: a new kid on the block?

Commentary

Abstract

From an epistemological point of view, nutritional physiology has been developed, like other factual sciences such as physics, from a purely descriptive to a mechanismic-explanatory scientific discipline. Nowadays, nutritional physiology has entered the molecular stage. Based on this micro-reductionism, molecular targets (e.g., transcription factors) of energy intake, certain nutrients (e.g., zinc) and selected plant bioactives (e.g., flavonoids) have been identified. Although these results are impressive, molecular approaches in nutritional physiology are limited by nature since the molecular targets of nutrients seem to have no ontic priority to understand the nutritional phenotype of an organism. Here we define, to the best of our knowledge, for the first time Nutri-informatics as a new bioinformatics discipline integrating large-scale data sets from nutritional studies into a stringent nutritional systems biology context. We suggest that Nutri-informatics, as an emerging field, may bridge the gap between nutritional biochemistry, nutritional physiology and metabolism to understand the interactions between an organism and its environment.

Keywords

Micro-reductionism Nutrigenomics Nutritional systems biology Nutri-informatics 

References

  1. Boesch-Saadatmandi C, Loboda A, Wagner AE, Stachurska A, Jozkowicz A, Dulak J, Doring F, Wolffram S, Rimbach G (2011) Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J Nutr Biochem 22(3):293–299. doi:10.1016/j.jnutbio.2010.02.008 PubMedCrossRefGoogle Scholar
  2. Boomgaarden I, Egert S, Rimbach G, Wolffram S, Muller MJ, Doring F (2010) Quercetin supplementation and its effect on human monocyte gene expression profiles in vivo. Br J Nutr 104(3):336–345. doi:10.1017/S0007114510000711 PubMedCrossRefGoogle Scholar
  3. Bunge M (2004) How does it work? The search for explanatory mechanisms. Philos Soc Sci 34(2):182–210. doi:10.1177/0048393103262550 CrossRefGoogle Scholar
  4. Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J Off Publ Fed Am Soc Exp Biol 10(9):940–954Google Scholar
  5. Daniel H, Drevon CA, Klein UI, Kleemann R, van Ommen B (2008) The challenges for molecular nutrition research 3: comparative nutrigenomics research as a basis for entering the systems level. Genes Nutr 3(3–4):101–106. doi:10.1007/s12263-008-0089-y PubMedCentralPubMedCrossRefGoogle Scholar
  6. Fischer A, Pallauf J, Gohil K, Weber SU, Packer L, Rimbach G (2001) Effect of selenium and vitamin E deficiency on differential gene expression in rat liver. Biochem Biophys Res Commun 285(2):470–475. doi:10.1006/bbrc.2001.5171 PubMedCrossRefGoogle Scholar
  7. Gaedicke S, Zhang X, Schmelzer C, Lou Y, Doering F, Frank J, Rimbach G (2008) Vitamin E dependent microRNA regulation in rat liver. FEBS Lett 582(23–24):3542–3546. doi:10.1016/j.febslet.2008.09.032 PubMedCrossRefGoogle Scholar
  8. Giller K, Huebbe P, Hennig S, Dose J, Pallauf K, Doering F, Rimbach G (2013) Beneficial effects of a 6-month dietary restriction are time-dependently abolished within 2 weeks or 6 months of refeeding–genome-wide transcriptome analysis in mouse liver. Free Radic Biol Med 61C:170–178. doi:10.1016/j.freeradbiomed.2013.03.023 PubMedCrossRefGoogle Scholar
  9. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105(44):17046–17049. doi:10.1073/pnas.0806560105 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Kaleta C, de Figueiredo LF, Werner S, Guthke R, Ristow M, Schuster S (2011) In silico evidence for gluconeogenesis from fatty acids in humans. PLoS Comput Biol 7(7):e1002116. doi:10.1371/journal.pcbi.1002116 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Ludewig AH, Klapper M, Doring F (2014) Identifying evolutionarily conserved genes in the dietary restriction response using bioinformatics and subsequent testing in Caenorhabditis elegans. Genes Nutr 9(1):363. doi:10.1007/s12263-013-0363-5 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Malkaram SA, Hassan YI, Zempleni J (2012) Online tools for bioinformatics analyses in nutrition sciences. Adv Nutr 3(5):654–665. doi:10.3945/an.112.002477 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Norheim F, Gjelstad IM, Hjorth M, Vinknes KJ, Langleite TM, Holen T, Jensen J, Dalen KT, Karlsen AS, Kielland A, Rustan AC, Drevon CA (2012) Molecular nutrition research: the modern way of performing nutritional science. Nutrients 4(12):1898–1944. doi:10.3390/nu4121898 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Strohle A, Doring F (2010) Molecularization in nutritional science: a view from philosophy of science. Mol Nutr Food Res 54(10):1385–1404. doi:10.1002/mnfr.201000078 PubMedCrossRefGoogle Scholar
  15. Swindell WR (2008) Genes regulated by caloric restriction have unique roles within transcriptional networks. Mech Ageing Dev 129(10):580–592. doi:10.1016/j.mad.2008.06.001 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Tanaka T, Ngwa JS, van Rooij FJ, Zillikens MC, Wojczynski MK, Frazier-Wood AC, Houston DK, Kanoni S, Lemaitre RN, Luan J, Mikkila V, Renstrom F, Sonestedt E, Zhao JH, Chu AY, Qi L, Chasman DI, de Oliveira Otto MC, Dhurandhar EJ, Feitosa MF, Johansson I, Khaw KT, Lohman KK, Manichaikul A, McKeown NM, Mozaffarian D, Singleton A, Stirrups K, Viikari J, Ye Z, Bandinelli S, Barroso I, Deloukas P, Forouhi NG, Hofman A, Liu Y, Lyytikainen LP, North KE, Dimitriou M, Hallmans G, Kahonen M, Langenberg C, Ordovas JM, Uitterlinden AG, Hu FB, Kalafati IP, Raitakari O, Franco OH, Johnson A, Emilsson V, Schrack JA, Semba RD, Siscovick DS, Arnett DK, Borecki IB, Franks PW, Kritchevsky SB, Lehtimaki T, Loos RJ, Orho-Melander M, Rotter JI, Wareham NJ, Witteman JC, Ferrucci L, Dedoussis G, Cupples LA, Nettleton JA (2013) Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am J Clin Nutr 97(6):1395–1402. doi:10.3945/ajcn.112.052183 PubMedCrossRefGoogle Scholar
  17. tom Dieck H, Doring F, Roth HP, Daniel H (2003) Changes in rat hepatic gene expression in response to zinc deficiency as assessed by DNA arrays. J Nutr 133(4):1004–1010Google Scholar
  18. van Ommen B (2007) Personalized nutrition from a health perspective: luxury or necessity? Genes Nutr 2(1):3–4. doi:10.1007/s12263-007-0018-5 PubMedCentralPubMedCrossRefGoogle Scholar
  19. van Ommen B, Bouwman J, Dragsted LO, Drevon CA, Elliott R, de Groot P, Kaput J, Mathers JC, Muller M, Pepping F, Saito J, Scalbert A, Radonjic M, Rocca-Serra P, Travis A, Wopereis S, Evelo CT (2010) Challenges of molecular nutrition research 6: the nutritional phenotype database to store, share and evaluate nutritional systems biology studies. Genes Nutr 5(3):189–203. doi:10.1007/s12263-010-0167-9 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Winter G, Kromer JO (2013) Fluxomics—connecting ‘omics analysis and phenotypes. Environ Microbiol 15(7):1901–1916. doi:10.1111/1462-2920.12064 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Molecular Prevention, Institute of Human Nutrition and Food ScienceUniversity of KielKielGermany
  2. 2.Food Science, Institute of Human Nutrition and Food SciencesUniversity of KielKielGermany

Personalised recommendations