Genes & Nutrition

, Volume 7, Issue 1, pp 91–98

Protective effects of vitamin E against hypercholesterolemia-induced age-related diseases

Research Paper


Hypercholesterolemia is a major risk factor for age-related diseases such as atherosclerosis and Alzheimer’s disease (AD). Changes in human plasma cholesterol levels results from the interaction between multiple genetic and environmental factors. The accumulation of excess cholesterol in blood vessels leads to atherosclerosis. Many studies on this field show that differential expression of oxidative stress-related proteins, lipid metabolism-related enzymes, and receptors response to atherogenic diet. Additionally, excess brain cholesterol has been associated with increased formation and deposition of amyloid-β peptide from amyloid precursor protein which may contribute to the risk and pathogenesis of AD. To consider genetically, more than 50 genes have been reported to influence the risk of late-onset AD. Some of these genes might be also important in cholesterol metabolism and transport. Epidemiological studies have shown an association between high intake and high serum concentrations of antioxidant vitamins like vitamin E and lower rates of ischemic heart diseases. It has been known that vitamin E also inhibits smooth muscle cell proliferation by non-antioxidant mechanism. On the basis of the previous results, vitamin E has been accepted as an important protective factor against hypercholesterolemia-induced age-related diseases.


Alzheimer’s disease Atherosclerosis Hypercholesterolemia Vitamin E Tocotrienol 


  1. Adachi H, Ishii N (2000) Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. J Gerontol A 55(6):B280–B285Google Scholar
  2. Ascherio A, Rimm E, Hernan MA, Giovannucci E, Kawachi I, Stampfer MJ et al (1999) Relation of consumption of vitamin E, vitamin C, and carotenoids to risk for stroke among men in the United States. Ann Intern Med 130(12):963–970PubMedGoogle Scholar
  3. Aytan N, Jung T, Tamturk F, Grune T, Kartal Ozer N (2008) Oxidative stress related changes in the brain of hypercholesterolemic rabbits. Biofactors 33:225–236PubMedCrossRefGoogle Scholar
  4. Azzi A, Boscoboinik D, Marilley D, Ozer NK, Stauble B, Tasinato A (1995) Vitamin E: a sensor and an information transducer of the cell oxidation state. Am J Clin Nutr 62(6 Suppl):1337S–1346SPubMedGoogle Scholar
  5. Balazs L, Leon M (1994) Evidence of an oxidative challenge in the Alzheimer’s brain. Neurochem Res 19:1131–1137PubMedCrossRefGoogle Scholar
  6. Black TM, Wang P, Maeda N, Coleman RA (2000) Palm tocotrienols protect ApoE± mice from diet-induced atheroma formation. J Nutr 130(10):2420–2426PubMedGoogle Scholar
  7. Bocan TM, Mueller SB, Mazur MJ, Uhlendorf PD, Brown EQ, Kieft KA (1993) The relationship between the degree of dietary-induced hypercholesterolemia in the rabbit and atherosclerotic lesion formation. Atherosclerosis 102:9–22PubMedCrossRefGoogle Scholar
  8. Burton GW, Ingold KU (1989) Vitamin E as an in vitro and in vivo antioxidant. Ann N Y Acad Sci 570:7–22PubMedCrossRefGoogle Scholar
  9. Butterfield DA, Martin L, Carney JM, Hensley K (1996) A beta (25–35) peptide displays H2O2-like reactivity towards aqueous Fe2+, nitroxide spin probes, and synaptosomal membrane proteins. Life Sci 58:217–228PubMedCrossRefGoogle Scholar
  10. Cash AD, Perry G, Smith MA (2002) Therapeutic potential in Alzheimer disease. Curr Med Chem 9:1605–1610PubMedGoogle Scholar
  11. Catalgol B, Grune T (2009) Protein pool maintenance during oxidative stress. Curr Pharm Des 15(26):3043–3051PubMedCrossRefGoogle Scholar
  12. Catalgol B, Özer NK (2010) Lipid rafts and redox regulation of cellular signaling in cholesterol induced atherosclerosis. Curr Cardiol Rev 6(4):309–324PubMedCrossRefGoogle Scholar
  13. Chitu V, Stanley ER (2006) Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol 18:39–48PubMedCrossRefGoogle Scholar
  14. Cordero Z, Drogan D, Weikert C, Boeing H (2010) Vitamin E and risk of cardiovascular diseases: a review of epidemiologic and clinical trial studies. Crit Rev Food Sci Nutr 50(5):420–440PubMedCrossRefGoogle Scholar
  15. Das DK (2010) Redox signaling via lipid rafts. In: Dipak Das (ed) Methods in redox signaling. Mary Ann Liebert, p 156–158Google Scholar
  16. Fan J, Watanabe T (2003) Inflammatory reactions in the pathogenesis of atherosclerosis. J Atheroscler Thromb 10:63–71PubMedCrossRefGoogle Scholar
  17. Feng J, Han J, Pearce SFA, Silverstein RL, Gotto AM, Hajjar DP et al (2000) Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-gamma. J Lipid Res 41:688–696PubMedGoogle Scholar
  18. Fortuno A, Jose GS, Moreno MU, Diez J, Zalba G (2005) Oxidative stress and vascular remodelling. Exp Physiol 90:457–462PubMedCrossRefGoogle Scholar
  19. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiat 66:137–147PubMedCrossRefGoogle Scholar
  20. Galbusera C, Facheris M, Magni F, Galimberti G, Sala G, Tremolada L et al (2004) Increased susceptibility to plasma lipid peroxidation in Alzheimer disease patients. Curr Alzheimer Res 1:103–109PubMedCrossRefGoogle Scholar
  21. Gey KF (1995) Ten-year retrospective on the antioxidant hypothesis of arteriosclerosis: Threshold plasma levels of antioxidant micronutrients related to minimum cardiovascular risk. J Nutr Biochem 6:206–236CrossRefGoogle Scholar
  22. Good PF, Perl DP, Bierer LM, Schmeidler J (1992) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 31(3):286–292PubMedCrossRefGoogle Scholar
  23. Good PF, Werner P, Hsu A, Olanow CW, Perl DP (1996) Evidence of neuronal oxidative damage in Alzheimer’s disease. Am J Pathol 149(1):21–28PubMedGoogle Scholar
  24. Green J, Bunyan J (1969) Vitamin E and the biological antioxidant theory. Nutr Abst Rev 39(2):321–345Google Scholar
  25. Griffiths HR, Moller L, Bartosz G, Bast A, Bertoni-Freddari C, Collins A, Cooke M, Coolen S, Haenen G, Hoberg AM, Loft S, Lunec J, Olinski R, Parry J, Pompella A, Poulsen H, Verhagen H, Astley SB (2002) Biomarkers. Mol Aspects Med 23(1–3):101–208PubMedCrossRefGoogle Scholar
  26. Grodstein F, Chen J, Willett WC (2003) High-dose antioxidant supplements and cognitive function in community-dwelling elderly women. Am J Clin Nutr 77:975–984PubMedGoogle Scholar
  27. Guyton JR, Bocan TM, Schifani TA (1985) Quantitative ultrastructural analysis of perifibrous lipid and its association with elastin in nonatherosclerotic human aorta. Arteriosclerosis 5:644–652PubMedCrossRefGoogle Scholar
  28. Harizi H, Gualde N (2006) Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derived inflammatory mediators. Cell Mol Immunol 3:271–277PubMedGoogle Scholar
  29. Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF et al (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci USA 91(8):3270–3274PubMedCrossRefGoogle Scholar
  30. Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65:2146–2156PubMedCrossRefGoogle Scholar
  31. Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 18:8126–8132PubMedGoogle Scholar
  32. Hirvonen T, Virtamo J, Korhonen P, Albanes D, Pietinen P (2000) Intake of flavonoids, carotenoids, vitamins C and E, and risk of stroke in male smokers. Stroke 31(10):2301–2306PubMedCrossRefGoogle Scholar
  33. Kamat CD, Gadal S, Mhatre M, Williamson KS, Pye QN, Hensley K (2008) Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J Alzheimers Dis 15(3):473–493PubMedGoogle Scholar
  34. Kaul N, Devaraj S, Jialal I (2001) Alpha-tocopherol and atherosclerosis. Exp Biol Med 226:5–12Google Scholar
  35. Keli SO, Hertog M, Feskens EJ, Kromhout D (1996) Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Arch Intern Med 156(6):637–642PubMedCrossRefGoogle Scholar
  36. Keller JN, Schmitt FA, Scheff SW, Ding Q, Chen Q, Butterfield DA et al (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64:1152–1156PubMedCrossRefGoogle Scholar
  37. Knekt P, Reunanen A, Jarvinen R, Seppanen R, Heliovaara M, Aromaa A (1994) Antioxidant vitamin intake and coronary mortality in a longitudinal population study. Am J Epidemiol 139(12):1180–1189PubMedGoogle Scholar
  38. Kushi LH, Folsom A, Prineas RJ, Mink PJ, Wu Y, Bostick RM (1996) Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N Engl J Med 334(18):1156–1162PubMedCrossRefGoogle Scholar
  39. Laurin D, Masaki KH, Foley DJ, White LR, Launer LJ (2004) Midlife dietary intake of antioxidants and risk of late-life incident dementia: the Honolulu-Asia aging study. Am J Epidemiol 159:959–967PubMedCrossRefGoogle Scholar
  40. Ledesma MD, Bonay P, Colaco C, Avila J (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269(34):21614–21619PubMedGoogle Scholar
  41. Lovell MA, Ehmann WD, Markesbery WR (1997) Elevated 4-hydroxynonenal in ventricular fluid in alzheimer’s disease. Neurobiol Aging 18(5):457–461PubMedCrossRefGoogle Scholar
  42. Luchsinger JA, Tang MX, Shea S, Mayeux R (2003) Antioxidant vitamin intake and risk of Alzheimer disease. Arch Neurol 60:203–208PubMedCrossRefGoogle Scholar
  43. Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25(1):29–38PubMedGoogle Scholar
  44. Markesbery WR, Lovell MA (2007) Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment. Arch Neurol 64:954–956PubMedCrossRefGoogle Scholar
  45. Masaki KH, Losonczy KG, Izmirlian G, Foley DJ, Ross GW, Petrovitch H et al (2000) Association of vitamin E and C supplement use with cognitive function and dementia in elderly men. Neurology 54:1265–1272PubMedGoogle Scholar
  46. Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40:759–766PubMedCrossRefGoogle Scholar
  47. Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in alzheimer’s disease. Ann Neurol 36:747–751PubMedCrossRefGoogle Scholar
  48. Mishto M, Belavista E, Santoro A, Stolzing A, Ligorio C, Nacmias B et al (2006) Immunoproteasome and LMP2 polymorphism in aged and alzheimer’s disease brains. Neurobiol Aging 27:54–66PubMedCrossRefGoogle Scholar
  49. Montine TJ, Amarnath V, Martin ME, Strittmatter WJ, Graham DG (1996) E-4-hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures. Am J Pathol 148(1):89–93PubMedGoogle Scholar
  50. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, Wilson RS, Scherr PA (2002) Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA 287:3230–3237PubMedCrossRefGoogle Scholar
  51. Muntwyler J, Hennekens CH, Manson JE, Buring JE, Gaziano JM (2002) Vitamin supplement use in a low-risk population of US male physicians and subsequent cardiovascular mortality. Arch Intern Med 162(13):1472–1476PubMedCrossRefGoogle Scholar
  52. Negis Y, Aytan N, Ozer N, Ogru E, Libinaki R, Gianello R et al (2006) The effect of tocopheryl phosphates on atherosclerosis progression in rabbits fed with a high cholesterol diet. Arch Biochem Biophys 450(1):63–66PubMedCrossRefGoogle Scholar
  53. Nordberg J, Arnér ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31(11):1287–1312PubMedCrossRefGoogle Scholar
  54. Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA (2006) Involvement of oxidative stres in Alzheimer disease. J Neuropathol Exp Neurol 65:631–641PubMedCrossRefGoogle Scholar
  55. Osterud B, Bjorklid E (2003) Role of monocytes in atherogenesis. Physiol Rev 83(4):1069–1112PubMedGoogle Scholar
  56. Ozer NK, Palozza P, Boscoboinik D, Azzi A (1993) d-alpha-tocopherol inhibits low density lipoprotein induced proliferation and protein kinase C activity in vascular smooth muscle cells. FEBS Lett 322(3):307–310PubMedCrossRefGoogle Scholar
  57. Ozer NK, Sirikci O, Taha S, San T, Moser U, Azzi A (1998) Effect of vitamin E and probucol on dietary cholesterol-induced atherosclerosis in rabbits. Free Radic Biol Med 24(2):226–233PubMedCrossRefGoogle Scholar
  58. Ozer NK, Negis Y, Aytan N, Villacorta L, Ricciarelli R, Zingg JM et al (2006) Vitamin E inhibits CD36 scavenger receptor expression in hypercholesterolemic rabbits. Atherosclerosis 184(1):15–20PubMedCrossRefGoogle Scholar
  59. Pappolla MA, Bryant-Thomas TK, Herbert D, Pacheco J, Fabra Garcia M, Manjon M et al (2003) Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology 61(2):199–205PubMedGoogle Scholar
  60. Parker RA, Pearce BC, Clark RW, Gordon DA, Wright JJ (1993) Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutarylcoenzyme A reductase. J Biol Chem 268(15):11230–11238PubMedGoogle Scholar
  61. Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S et al (2005) Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 352:2379–2388PubMedCrossRefGoogle Scholar
  62. Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14:628–638PubMedCrossRefGoogle Scholar
  63. Prasad K, Mantha S, Kalra J, Lee P (1997) Hypercholesterolemia-induced oxidative stress in heart and its prevention by vitamin E. Int J Angiol 6:13–17CrossRefGoogle Scholar
  64. Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21:4183–4187PubMedGoogle Scholar
  65. Premkumar DR, Smith MA, Richey PL, Petersen RB, Castellani R, Kutty RK et al (1995) Induction of heme oxygenase-1 mRNA and protein in neocortex and cerebral vessels in Alzheimer’s disease. J Neurochem 65:1399–1402PubMedCrossRefGoogle Scholar
  66. Qureshi AA, Qureshi N, Wright JJ, Shen Z, Kramer G, Gapor A et al (1991) Lowering of serum cholesterol in hypercholesterolemic humans by tocotrienols (palmvitee). Am J Clin Nutr 53(4 Suppl):1021S–1026SPubMedGoogle Scholar
  67. Qureshi AA, Bradlow BA, Brace L, Manganello J, Peterson DM, Pearce BC et al (1995) Response of hypercholesterolemic subjects to administration of tocotrienols. Lipids 30(12):1171–1177PubMedCrossRefGoogle Scholar
  68. Qureshi AA, Sami SA, Salser WA, Khan FA (2001a) Synergistic effect of tocotrienol-rich fraction (TRF(25)) of rice bran and lovastatin on lipid parameters in hypercholesterolemic humans. J Nutr Biochem 12(6):318–329PubMedCrossRefGoogle Scholar
  69. Qureshi AA, Salser WA, Parmar R, Emeson EE (2001b) Novel tocotrienols of rice bran inhibit atherosclerotic lesions in C57BL/6 ApoE-deficient mice. J Nutr 131(10):2606–2618PubMedGoogle Scholar
  70. Qureshi AA, Sami SA, Salser WA, Khan FA (2002) Dose-dependent suppression of serum cholesterol by tocotrienol-rich fraction (TRF25) of rice bran in hypercholesterolemic humans. Atherosclerosis 161(1):199–207PubMedCrossRefGoogle Scholar
  71. Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL (2006) A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab 4:211–221PubMedCrossRefGoogle Scholar
  72. Ricciarelli R, Tasinato A, Clément S, Ozer NK, Boscoboinik D, Azzi A (1998) Alpha-tocopherol specifically inactivates cellular protein kinase C alpha by changing its phosphorylation state. Biochem J 334(Pt 1):243–249PubMedGoogle Scholar
  73. Ricciarelli R, Zingg JM, Azzi A (2000) Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic smooth muscle cells. Circulation 102(1):82–87PubMedGoogle Scholar
  74. Ricciarelli R, Zingg J, Azzi A (2001) Vitamin E: protective role of a Janus molecule. FASEB J 15(13):2314–2325PubMedCrossRefGoogle Scholar
  75. Rimm EB, Stampfer M, Ascherio A, Giovannucci E, Colditz GA, Willett WC (1993) Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 328(20):1450–1456PubMedCrossRefGoogle Scholar
  76. Robbesyn F, Salvayre R, Negre-Salvayre A (2004) Dual role of oxidized LDL on the NF-kappaB signaling pathway. Free Radic Res 38(6):541–551PubMedCrossRefGoogle Scholar
  77. Salvayre R, Auge N, Benoist H, Negre-Salvayre A (2002) Oxidized low-density lipoprotein-induced apoptosis. Biochim Biophys Acta 1585(2–3):213–221PubMedGoogle Scholar
  78. Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M et al (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s disease cooperative study. N Engl J Med 336:1216–1222PubMedCrossRefGoogle Scholar
  79. Sayre LM, Zelasko DA, Haris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68(5):2092–2097PubMedCrossRefGoogle Scholar
  80. Schmitz G, Grandl M (2007) Role of redox regulation and lipid rafts in macrophages during ox-LDL mediated foam cell formation. Antioxid Redox Signal 9(9):1499–1518PubMedCrossRefGoogle Scholar
  81. Schuessel K, Schafer S, Bayer TA, Czech C, Pradier L, Muller-Spahn F et al (2005) Impaired Cu/Zn- SOD activity contributes to increased oxidative damage in APP transgenic mice. Neurobiol Dis 18:89–99PubMedCrossRefGoogle Scholar
  82. Sen CK, Khanna S, Roy S (2006) Tocotrienols: vitamin E beyond tocopherols. Life Sci 78:2088–2098PubMedCrossRefGoogle Scholar
  83. Sirikci O, Ozer NK, Azzi A (1996) Dietary cholesterol induced changes of protein kinase C and the effect of vitamin E in rabbit aortic smooth muscle cells. Atherosclerosis 126:253–263PubMedCrossRefGoogle Scholar
  84. Smith EB (1974) The relationship between plasma, tissue lipids in human atherosclerosis. Adv Lipid Res 12:1–49PubMedGoogle Scholar
  85. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA et al (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88(23):10540–10543PubMedCrossRefGoogle Scholar
  86. Smith MA, Taneda S, Richey PL, Miyata S, Yan SD, Stern D et al (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA 91(12):5710–5714PubMedCrossRefGoogle Scholar
  87. Smith MA, Rudnicka-Nawrot M, Richey PL, Praprotnik D, Mulvihill P, Miller CA et al (1995) Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease. J Neurochem 64(6):2660–2666PubMedCrossRefGoogle Scholar
  88. Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36:1539–1550PubMedCrossRefGoogle Scholar
  89. Stampfer MJ, Hennenkens C, Manson JE, Colditz GA, Rosner B, Willett WC (1993) Vitamin E consumption and the risk of coronary disease in women. N Engl J Med 328(20):1444–1449PubMedCrossRefGoogle Scholar
  90. Steinberg D (2009) The LDL modification hypothesis of atherogenesis: an update. J Lipid Res 50:S376–S381PubMedCrossRefGoogle Scholar
  91. Stocker R, Keaney JF Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84(4):1381–1478PubMedCrossRefGoogle Scholar
  92. Stokes KY, Cooper D, Tailor A, Granger DN (2002) Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide. Free Radic Biol Med 33(8):1026–1036PubMedCrossRefGoogle Scholar
  93. Suarna C, Hood RL, Dean RT, Stocker R (1993) Comparative antioxidant activity of tocotrienols and other natural lipid-soluble antioxidants in a homogeneous system, and in rat and human lipoproteins. Biochim Biophys Acta 1166(2–3):163–170PubMedGoogle Scholar
  94. Sultana R, Perluigi M, Butterfield DA (2006) Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurode-generation from redox proteomics. Antioxid Redox Signal 8:2021–2037PubMedCrossRefGoogle Scholar
  95. Suzuki YJ, Tsuchiya M, Wassall SR, Choo YM, Govil G, Kagan VE et al (1993) Structural and dynamic membrane properties of alpha-tocopherol and alpha-tocotrienol: implication to the molecular mechanism of their antioxidant potency. Biochemistry 32(40):10692–10699PubMedCrossRefGoogle Scholar
  96. Tan DT, Khor HT, Low WH, Ali A, Gapor A (1991) Effect of a palm-oil-vitamin E concentrate on the serum and lipoprotein lipids in humans. J Clin Nutr 53(4 Suppl):1027S–1030SGoogle Scholar
  97. Thomas SR, Neuzil J, Mohr D, Stocker R (1995) Coantioxidants make alpha-tocopherol an efficient antioxidant for low-density lipoprotein. Am J Clin Nutr 62(6 Suppl):1357S–1364SPubMedGoogle Scholar
  98. Todd S, Woodward M, Tunstall-Pedoe H, Bolton-Smith C (1999) Dietary antioxidant vitamins and fiber in the etiology of cardiovascular disease and all-causes mortality: results from the Scottish heart health study. Am J Epidemiol 150(10):1073–1080PubMedGoogle Scholar
  99. Traber MG, Atkinson JM (2007) Vitamin E, antioxidant and nothing more. Free Radic Biol Med 43(1):4–15PubMedCrossRefGoogle Scholar
  100. Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T (1999) Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 274:2234–2242PubMedCrossRefGoogle Scholar
  101. Upston JM, Terentis A, Stocker R (1999) Tocopherol-mediated peroxidation of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement. FASEB J 13(9):977–994PubMedGoogle Scholar
  102. Veinbergs I, Mallory M, Sagara Y, Masliah E (2000) Vitamin E supplementation prevents spatial learning deficits and dendritic alterations in aged apolipoprotein E-deficient mice. Eur J Neurosci 12:4541–4546PubMedGoogle Scholar
  103. Vogiatzi G, Tousoulis D, Stefanadis C (2009) The role of oxidative stress in atherosclerosis. Hellenic J Cardiol 50(5):402–409PubMedGoogle Scholar
  104. Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA (2005) Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neurochem 93:953–962PubMedCrossRefGoogle Scholar
  105. Watkins ML, Erickson JD, Thun MJ, Mulinare J, Heath CW Jr (2000) Multivitamin use and mortality in a large prospective study. Am J Epidemiol 152(2):149–162PubMedCrossRefGoogle Scholar
  106. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382(6593):685–691PubMedCrossRefGoogle Scholar
  107. Yochum LA, Folsom AR, Kushi LH (2000) Intake of antioxidant vitamins and risk of death from stroke in postmenopausal women. Am J Clin Nutr 72(2):476–483PubMedGoogle Scholar
  108. Zandi PP, Anthony JC, Khachaturian AS, Stone SV, Gustafson D, Tschanz JT et al (2004) Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the cache county study. Arch Neurol 61:82–88PubMedCrossRefGoogle Scholar
  109. Zingg JM, Azzi A (2004) Non-antioxidant activities of vitamin E. Curr Med Chem 11(9):1113–1130PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of MedicineMarmara UniversityHaydarpasa, IstanbulTurkey

Personalised recommendations