Genes & Nutrition

, Volume 6, Issue 2, pp 181–188 | Cite as

Gene regulation in β-sitosterol-mediated stimulation of adipogenesis, glucose uptake, and lipid mobilization in rat primary adipocytes

  • Jen-Wai Chai
  • Siang-Ling Lim
  • M. S. Kanthimathi
  • Umah Rani Kuppusamy
Research Paper

Abstract

The nutraceutical benefits of β-sitosterol (SIT) are well documented. The present study investigated the in vitro effects of SIT on adipogenesis, glucose transport, and lipid mobilization in rat adipocytes. Primary cultures of rat preadipocytes and differentiated adipocytes were used in this study. Glucose uptake was measured by the uptake of radio-labeled glucose. Adipogenesis and lipolysis were measured by oil-red-O and glycerol quantification methods, respectively. The expression of protein kinase B (Akt), glucose transporter 4 (GLUT4), hormone sensitive lipase (HSL), and phosphatidylinositol-3-kinase (PI3 K) genes in SIT-treated adipocytes were assessed by real-time reverse transcription polymerase chain reaction (RT–PCR). The data showed that SIT induced glucose uptake in adipocytes. It also stimulated adipogenesis in differentiating preadipocytes. Interestingly, although SIT displayed general insulin-mimetic activity by stimulating glucose uptake and adipogenesis, it also induced lipolysis in adipocytes. Furthermore, the SIT-induced lipolysis was not attenuated by insulin and co-incubation of SIT with epinephrine improved epinephrine-induced lipolysis. GLUT4 gene expression was highly down-regulated in SIT-treated adipocytes, compared to insulin-treated adipocytes, which was up-regulated. Insulin- and SIT-treated adipocytes showed similar levels of Akt, HSL, and PI3 K gene down-regulation. These observations suggest that the elevation of glucose uptake in SIT-treated adipocytes was unrelated to de novo synthesis of GLUT4 and the SIT-induced lipolysis is associated with the down-regulation of Akt and PI3K genes. The unique effects of SIT on the regulation of glucose uptake, adipogenesis, and lipolysis in adipocytes show that it has potential to be utilized in diabetes and weight management.

Keywords

Beta-sitosterol Adipocytes Glucose uptake Adipogenesis Lipolysis 

References

  1. 1.
    Abe D, Saito T, Sekiya K (2006) Sennidin stimulates glucose incorporation in rat adipocytes. Life Sci 79:1027–1033. doi:10.1016/j.lfs.2006.03.007 PubMedCrossRefGoogle Scholar
  2. 2.
    Akerblad P, Lind U, Liberg D, Bamberg K, Sigvardsson M (2002) Early B-cell factor (O/E-1) is a promoter of adipogenesis and involved in control of genes important for terminal adipocyte differentiation. Mol Cell Biol 22:8015–8025. doi:10.1128/MCB.22.22.8015-8025.2002 PubMedCrossRefGoogle Scholar
  3. 3.
    Aubin D, Gagnon A, Sorisky A (2005) Phosphoinositide 3-kinase is required for human adipocyte differentiation in culture. Int J Obes (Lond) 29:1006–1009. doi:10.1038/sj.ijo.0802961 CrossRefGoogle Scholar
  4. 4.
    Awad AB, Begdache LA, Fink CS (2000) Effect of sterols and fatty acids on growth and triglyceride accumulation in 3T3–L1 cells. J Nutr Biochem 11:153–158. doi:10.1016/S0955-2863(99)00087-X PubMedCrossRefGoogle Scholar
  5. 5.
    Awad AB, Chinnam M, Fink CS, Bradford PG (2007) Beta-Sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine 14:747–754. doi:10.1016/j.phymed.2007.01.003 PubMedCrossRefGoogle Scholar
  6. 6.
    Backhouse N, Rosales L, Apablaza C, Goity L, Erazo S, Negrete R, Theodoluz C, Rodriguez J, Delporte C (2008) Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa, Buddlejaceae. J Ethnopharmacol 116:263–269. doi:10.1016/j.jep.2007.11.025 PubMedCrossRefGoogle Scholar
  7. 7.
    Bevan P (2001) Insulin signalling. J Cell Sci 114:1429–1430. PMID:11282018Google Scholar
  8. 8.
    Bouic PJ (2001) The role of phytosterols and phytosterolins in immune modulation: a review of the past 10 years. Curr Opin Clin Nutr Metab Care 4:471–475. PMID:11706278Google Scholar
  9. 9.
    Bouic PJ, Clark A, Lamprecht J, Freestone M, Pool EJ, Liebenberg RW, Kotze D, van Jaarsveld PP (1999) The effects of B-sitosterol (BSS) and B-sitosterol glucoside (BSSG) mixture on selected immune parameters of marathon runners: inhibition of post marathon immune suppression and inflammation. Int J Sports Med 20:258–262. PMID:10376483Google Scholar
  10. 10.
    Bouic PJ, Etsebeth S, Liebenberg RW, Albrecht CF, Pegel K, Van Jaarsveld PP (1996) Beta-Sitosterol and beta-sitosterol glucoside stimulate human peripheral blood lymphocyte proliferation: implications for their use as an immunomodulatory vitamin combination. Int J Immunopharmacol 18:693–700. doi:10.1016/S0192-0561(97)85551-8 PubMedCrossRefGoogle Scholar
  11. 11.
    Choi S, Kim KW, Choi JS, Han ST, Park YI, Lee SK, Kim JS, Chung MH (2002) Angiogenic activity of beta-sitosterol in the ischaemia/reperfusion-damaged brain of Mongolian gerbil. Planta Med 68:330–335. PMID:11988857Google Scholar
  12. 12.
    Chuang CC, Yang RS, Tsai KS, Ho FM, Liu SH (2007) Hyperglycemia enhances adipogenic induction of lipid accumulation: involvement of extracellular signal-regulated protein kinase 1/2, phosphoinositide 3-kinase/Akt, and peroxisome proliferator-activated receptor gamma signaling. Endocrinol 148:4267–4275. doi:10.1210/en.2007-0179 CrossRefGoogle Scholar
  13. 13.
    Cornelius P, MacDougald OA, Lane MD (1994) Regulation of adipocyte development. Annu Rev Nutr 14:99–129. doi:10.1146/annurev.nu.14.070194.000531 PubMedCrossRefGoogle Scholar
  14. 14.
    Devaraj S, Jialal I, Vega-Lopez S (2004) Plant sterol-fortified orange juice effectively lowers cholesterol levels in mildly hypercholesterolemic healthy individuals. Arterioscler Thromb Vasc Biol 24:e25–28. doi:10.1161/01.ATV.0000120784.08823.99 PubMedCrossRefGoogle Scholar
  15. 15.
    Hwang SL, Kim HN, Jung HH, Kim JE, Choi DK, Hur JM, Lee JY, Song H, Song KS, Huh TL (2008) Beneficial effects of beta-sitosterol on glucose and lipid metabolism in L6 myotube cells are mediated by AMP-activated protein kinase. Biochem Biophys Res Commun 377:1253–1258. doi:10.1016/j.bbrc.2008.10.136 PubMedCrossRefGoogle Scholar
  16. 16.
    Imanaka H, Koide H, Shimizu K, Asai T, Kinouchi Shimizu N, Ishikado A, Makino T, Oku N (2008) Chemoprevention of tumor metastasis by liposomal beta-sitosterol intake. Biol Pharm Bull 31:400–404. doi:10.1248/bpb.31.400 PubMedCrossRefGoogle Scholar
  17. 17.
    Ivorra MD, D’Ocon MP, Paya M, Villar A (1988) Antihyperglycemic and insulin-releasing effects of beta-sitosterol 3-beta-D-glucoside and its aglycone, beta-sitosterol. Arch Int Pharmacodyn Ther 296:224–231. PMID:3071280Google Scholar
  18. 18.
    Ivorra MD, Paya M, Villar A (1990) Effect of beta-sitosterol-3-beta-D-glucoside on insulin secretion in vivo in diabetic rats and in vitro in isolated rat islets of Langerhans. Pharmazie 45:271–273. PMID:2200064Google Scholar
  19. 19.
    Kandulska K, Nogowski L, Szkudelski T (1999) Effect of some phytoestrogens on metabolism of rat adipocytes. Reprod Nutr Dev 39:497–501. PMID:10493154Google Scholar
  20. 20.
    Kim YK, Choi HY, Kim NH, Lee W, Seo DW, Kang DW, Lee HY, Han JW, Park SW, Kim SN (2007) Reversine stimulates adipocyte differentiation and downregulates Akt and p70(s6 k) signaling pathways in 3T3–L1 cells. Biochem Biophys Res Commun 358:553–558. doi:10.1016/j.bbrc.2007.04.165 PubMedCrossRefGoogle Scholar
  21. 21.
    Le Lay S, Lefrere I, Trautwein C, Dugail I, Krief S (2002) Insulin and sterol-regulatory element-binding protein-1c (SREBP-1C) regulation of gene expression in 3T3-L1 adipocytes. Identification of CCAAT/enhancer-binding protein beta as an SREBP-1C target. J Biol Chem 277:35625–35634. doi:10.1074/jbc.M203913200 Google Scholar
  22. 22.
    Lim SL, Chai JW, Kuppusamy UR (2008) Evaluation of Syzygium jambolanum methanolic leaf extract for insulin-like properties. Res J Biol Sci 3:1109–1114. doi:10.3923/rjbsci.2008.1109.1114PDF Google Scholar
  23. 23.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  24. 24.
    Malini T, Vanithakumari G (1990) Rat toxicity studies with beta-sitosterol. J Ethnopharmacol 28:221–234. doi:10.1016/0378-8741(90)90032-O PubMedCrossRefGoogle Scholar
  25. 25.
    Marin P, Hogh-Kristiansen I, Jansson S, Krotkiewski M, Holm G, Bjorntorp P (1992) Uptake of glucose carbon in muscle glycogen and adipose tissue triglycerides in vivo in humans. Am J Physiol 263:E473–480. PMID:1415527Google Scholar
  26. 26.
    Moon DO, Kim MO, Choi YH, Kim GY (2008) Beta-Sitosterol induces G(2)/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3 K/Akt signaling pathways. Cancer Lett 264:181–191. doi:10.1016/j.canlet.2008.01.032 PubMedCrossRefGoogle Scholar
  27. 27.
    Moon DO, Lee KJ, Choi YH, Kim GY (2007) Beta-sitosterol-induced-apoptosis is mediated by the activation of ERK and the downregulation of Akt in MCA-102 murine fibrosarcoma cells. Int Immunopharmacol 7:1044–1053. doi:10.1016/j.intimp.2007.03.010 PubMedCrossRefGoogle Scholar
  28. 28.
    Moon EJ, Lee YM, Lee OH, Lee MJ, Lee SK, Chung MH, Park YI, Sung CK, Choi JS, Kim KW (1999) A novel angiogenic factor derived from Aloe vera gel: beta-sitosterol, a plant sterol. Angiogenesis 3:117–123. doi:10.1023/A:1009058232389 PubMedCrossRefGoogle Scholar
  29. 29.
    Nestel P, Cehun M, Pomeroy S, Abbey M, Weldon G (2001) Cholesterol-lowering effects of plant sterol esters and non-esterified stanols in margarine, butter and low-fat foods. Eur J Clin Nutr 55:1084–1090. doi:10.1038/sj.ejcn.1601264 PubMedCrossRefGoogle Scholar
  30. 30.
    Olefsky JM (1977) Insensitivity of large rat adipocytes to the antilipolytic effects of insulin. J Lipid Res 18:459–464. PMID:894138Google Scholar
  31. 31.
    Pegel KH (1997) The importance of sitosterol and sitosterolin in human and animal nutrition. S Afr J Sci 93:263–268. ISI:A1997YC29400005Google Scholar
  32. 32.
    Sanders DJ, Minter HJ, Howes D, Hepburn PA (2000) The safety evaluation of phytosterol esters. Part 6. The comparative absorption and tissue distribution of phytosterols in the rat. Food Chem Toxicol 38:485–491. doi:10.1016/S0278-6915(00)00021-1 PubMedCrossRefGoogle Scholar
  33. 33.
    Stryer L (1995) Biochemistry. W. H. Freeman & Co, New YorkGoogle Scholar
  34. 34.
    Sutherland WH, Scott RS, Lintott CJ, Robertson MC, Stapely SA, Cox C (1992) Plasma non-cholesterol sterols in patients with non-insulin dependent diabetes mellitus. Horm Metab Res 24:172–175. PMID:1601392Google Scholar
  35. 35.
    Szkudelska K, Nogowski L, Szkudelski T (2008) Genistein, a plant-derived isoflavone, counteracts the antilipolytic action of insulin in isolated rat adipocytes. J Steroid Biochem Mol Biol 109:108–114. doi:10.1016/j.jsbmb.2007.12.006 PubMedCrossRefGoogle Scholar
  36. 36.
    Thompson GR, Grundy SM (2005) History and development of plant sterol and stanol esters for cholesterol-lowering purposes. Am J Cardiol 96:3–9. doi:10.1016/j.amjcard.2005.03.013 CrossRefGoogle Scholar
  37. 37.
    Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22:158–161. doi:10.1136/jcp.22.2.158 PubMedCrossRefGoogle Scholar
  38. 38.
    Weizel A, Richter WO (1997) Drug therapy of severe hypercholesterolemia. Eur J Med Res 2:265–269. PMID:9182654Google Scholar
  39. 39.
    Wilt TJ, MacDonald R, Ishani A (1999) Beta-sitosterol for the treatment of benign prostatic hyperplasia: a systematic review. BJU Int 83:976–983. doi:10.1046/j.1464-410x.1999.00026.x PubMedCrossRefGoogle Scholar
  40. 40.
    Yoshida Y, Niki E (2003) Antioxidant effects of phytosterol and its components. J Nutr Sci Vitaminol (Tokyo) 49:277–280. PMID:14598915Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jen-Wai Chai
    • 1
  • Siang-Ling Lim
    • 1
  • M. S. Kanthimathi
    • 1
  • Umah Rani Kuppusamy
    • 1
  1. 1.Department of Molecular Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations