Genes & Nutrition

, Volume 2, Issue 4, pp 353–358 | Cite as

A mixture of the aqueous extract of Garcinia cambogia, soy peptide and l-carnitine reduces the accumulation of visceral fat mass in rats rendered obese by a high fat diet

  • Yun Jung Kim
  • Keun-Young Kim
  • Min Sun Kim
  • Jin Hee Lee
  • Kang Pyo Lee
  • Taesun Park
Research Paper

Abstract

The aim of the present study was to investigate the anti-obesity effect of a mixture composed of Garcinia cambogia extract, soypeptide, and l-carnitine (1.2:0.3:0.02, w/w/w) in rats rendered obese by a high-fat diet (HFD). Sprague-Dawley rats were fed either the high-fat control diet (CD) or the 0.38% mixture-supplemented HFD (CD + M) for 9 weeks. The mixture significantly reduced body weight gain and the accumulation of visceral fat mass in a rat model of HFD-induced obesity. Moreover, the mixture effectively lowered blood and hepatic lipid concentrations and serum glucose, insulin, c-peptide, and leptin levels in rats with HFD-induced obesity. Results from real-time reverse transcription-polymerase chain reaction analyses indicated that the expression levels of leptin, tumor necrosis factor-alpha (TNF-α), and sterol regulatory element binding protein 1c (SREBP1c) genes in the epididymal fat tissue of rats fed the CD + M diet were 0.4-, 0.6-, and 0.48-fold, respectively, of those found in the CD rats ( < 0.05), while expression of the uncoupling protein 2 (UCP2) gene in epididymal adipose tissue was 1.25-fold ( < 0.05) of that found in CD rats. In conclusion, a mixture composed of G. cambogia extract, soy peptide, and l-carnitine attenuated visceral fat accumulation and improved dyslipidemia in a rat model with HFD-induced obesity.

Keywords

Garcinia cambogia Soypeptide l-carnitine Anti-obesity effect High-fat-diet-induced obesity rats Obesity-related genes 

References

  1. 1.
    Alam I, Lewis K, Stephens JW, Baxter JN (2006) Obesity, metabolic syndrome and sleep apnoea: all pro-inflammatory states. Obes Rev 8:119–127CrossRefGoogle Scholar
  2. 2.
    Anderson JW, Smith BM, Washnock CS (1990) Cardiovascular and renal benefits of dry bean and soybean intake. Am J Clin Nutr 70:464–474Google Scholar
  3. 3.
    Anderson JW, Johnstone BM, Cook-Newell ME (1995) Meta-analysis of effects of soy protein intake on serum lipids in humans. N Engl J Med 333:276–282PubMedCrossRefGoogle Scholar
  4. 4.
    Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS (2002) Anti-diabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51:1851–1858PubMedCrossRefGoogle Scholar
  5. 5.
    Axen KV, Dikeakos A, Sclafani A (2003) High dietary fat promotes syndrome X in nonobese rats. J Nutr 133:2244–2249PubMedGoogle Scholar
  6. 6.
    Berkhout TA, Havekes LM, Pearce NJ, Groot PHE (1990) The effect of (−)-hydroxycitrate on the activity of the low-densitylipoprotein receptor and 3-hydroxy-3-methylglutaryl-CoA reductase levels in the human hepatoma cell line Hep G2. Biochem J 272:181–186PubMedGoogle Scholar
  7. 7.
    Bhathena SJ, Velasquez MT (2002) Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 76:1191–1201PubMedGoogle Scholar
  8. 8.
    Bouchard C, Tremblay A (1997) Genetic influences on the response of body fat and fat distribution to positive and negative energy balances in human identical twins. J Nutr 127:943–947Google Scholar
  9. 9.
    Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340PubMedCrossRefGoogle Scholar
  10. 10.
    Brun RP, Kim JB, Hu E, Spiegelman MB (1997) Peroxisome proliferator-activated receptor gamma and the control of adipogenesis. Curr Opin Lipidol 8:212–218PubMedCrossRefGoogle Scholar
  11. 11.
    Fajas L, Fruchart JC, Auwerx J (1998) Transcriptional control of adipogenesis. Curr Opin Lipidol 10:165–173Google Scholar
  12. 12.
    Folch J, Less M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  13. 13.
    Food Drug Administration (1999) Food labeling health claims; soy protein and coronary heart disease. Food and drug administration, HHS. Final rule. Fed Regist 64:57700–57733Google Scholar
  14. 14.
    Gabriely I, Ma XH, Yang XM, Atzmon G, Rajala MW, Berg AH, Scherer P, Rossetti L, Barzilai N (2002) Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes 51:2951–2958PubMedCrossRefGoogle Scholar
  15. 15.
    Gong DW, He Y, Reitman ML (1999) Genomic organization and regulation by dietary fat of the uncoupling protein 3 and 2 genes. Biochem Biophys Res Commun 256:27–32PubMedCrossRefGoogle Scholar
  16. 16.
    Guyton AC, Hall JE (1996) In: Guyton AC (ed) Textbook of medical physiology. Saunders, Philadelphia, pp 869–899Google Scholar
  17. 17.
    Han LK, Xu BJ, Kimura Y, Zheng Y, Okuda H (2000) Platycodi radix affects lipid metabolism in mice with high fat diet-induced obesity. J Nutr 130:2760–2764PubMedGoogle Scholar
  18. 18.
    Han LK, Gong XJ, Kawano S, Saito M, Kimura Y, Okuda H (2005) Antiobesity actions of Zingiber officinale Roscoe. Yakugaku Zasshi 125:213–217PubMedCrossRefGoogle Scholar
  19. 19.
    Hasegawa N (2001) Garcinia extract inhibits lipid droplet accumulation without affecting adipose conversion in 3T3-L1 cells. Phytother Res 15:172–173PubMedCrossRefGoogle Scholar
  20. 20.
    Heymsfield SB, Allison DB, Vasselli JR, Pietrobelli A, Greenfield D, Nunez C (1998) Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent. JAMA 280:1596–1600PubMedCrossRefGoogle Scholar
  21. 21.
    Ishihara K, Oyaizu S, Onuki K, Lim K, Fushiki T (2000) Chronic (−)-hydroxycitrate administration spares carbohydrate utilization and promotes lipid oxidation during exercise in mice. J Nutr 130:2990–2995PubMedGoogle Scholar
  22. 22.
    Jena BS, Jayaprakasha GK, Singh RP, Sakariah KK (2002) Chemistry and biochemistry of (−)-hydroxycitric acid from Garcinia. J Agric Food Chem 50:10–22PubMedCrossRefGoogle Scholar
  23. 23.
    Junbao Y, Long J, Jiangbi W, Yonghui D, Tianzhen Z, Songyi Q, Wei L (2004) Inhibitive effect of Semen Cassiaem on the weight gain in rats with nutritive obesity. Zhong Yao Cai 27:281–284PubMedGoogle Scholar
  24. 24.
    Kusunoki M, Tsutsumi K, Iwata K, Yin W, Nakamura T, Ogawa H, Nomura T, Mizutani K, Futenma A, Utsumi K, Miyata T (2005) NO-1886 (ibrolipim), a lipoprotein lipase activator, increases the expression of uncoupling protein 3 in skeletal muscle and suppresses fat accumulation in high-fat diet-induced obesity in rats. Metabolism 54:1587–1592PubMedCrossRefGoogle Scholar
  25. 25.
    Lee MS, Lee HJ, Lee HS, Kim Y (2006) l-carnitine stimulates lipolysis via induction of the lipolytic gene expression and suppression of the adipogenic gene expression in 3T3-L1 adipocytes. J Med Food 9:468–473PubMedCrossRefGoogle Scholar
  26. 26.
    Lin FT, Lane MD (1994) CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci USA 91:8757–8761PubMedCrossRefGoogle Scholar
  27. 27.
    Mandrup S, Lane MD (1997) Regulating adipogenesis. J Biol Chem 272:5367–5370PubMedCrossRefGoogle Scholar
  28. 28.
    Nakamura T, Tokunaga K, Shimomura I, Nishida M, Yoshida S, Kotani K, Islam AHMW, Keno Y, Kobatake T, Nagai Y, Fujioka S, Tarui S, Matuzawa Y (1994) Contribution of visceral fat accumulation to the development of coronary artery disease in non-obese men. Atherosclerosis 107:239–246PubMedCrossRefGoogle Scholar
  29. 29.
    O’Shaughnessy IM, Myers TJ, Stepniakowski K, Nazzaro P, Kelly TM, Hoffmann RG, Egan BM, Kissebah AH (1995) Glucose metabolism in abdominally obese hypertensive and normotensive subjects. Hypertension 26:186–192PubMedGoogle Scholar
  30. 30.
    Rebouche CJ, Seim H (1998) Carnitine metabolism and its regulation in microorganisms and mammals. Annu Rev Nutr 18:39–61PubMedCrossRefGoogle Scholar
  31. 31.
    Rousseau V, Becker DJ, Ongemba LN, Rahier J, Henquin JC, Brichard SM (1997) Developmental and nutritional changes of ob and PPAR gamma 2 gene expression in rat white adipose tissue. Biochem J 321:451–456PubMedGoogle Scholar
  32. 32.
    Saleh MC, Wheeler MB, Chan CB (2002) Uncoupling protein-2: evidence for its function as a metabolic regulator. Diabetologia 45:174–87PubMedCrossRefGoogle Scholar
  33. 33.
    Staiger H, Haring HU (2005) Adipocytokines: fat-derived humoral mediators of metabolic homeostasis. Exp Clin Endocrinol Diabetes 113:67–79PubMedCrossRefGoogle Scholar
  34. 34.
    Sullivan AC (1977) Reactivity and inhibitor potential of hydroxycitrate isomers with citrate synthetase, citrate lyase, and ATP citrate lyase. J Biol Chem 252:7583–7590PubMedGoogle Scholar
  35. 35.
    Tein I, Bukovac SW, Xie-ZW (1996) Characterization of the human plasmalemmal carnitine transporter in cultured skin fibroblasts. Arch Biochem Biophys 329:145–155PubMedCrossRefGoogle Scholar
  36. 36.
    Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8:1224–1234PubMedCrossRefGoogle Scholar
  37. 37.
    Velasquez MT, Bhathena SJ (2001) Dietary phytoestrogens a possible role in renal disease protection. Am J Kidney Dis 37:1056–1068PubMedGoogle Scholar
  38. 38.
    Wutzke KD, Lorenz H (2004) The effect of l-carnitine on fat oxidation, protein turnover, and body composition in slightly overweight subjects. Metabolism 53:1002–1006PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Yun Jung Kim
    • 1
  • Keun-Young Kim
    • 1
  • Min Sun Kim
    • 2
  • Jin Hee Lee
    • 2
  • Kang Pyo Lee
    • 2
  • Taesun Park
    • 1
  1. 1.Department of Food and Nutrition, Brain Korea 21 ProjectYonsei UniversitySeoulSouth Korea
  2. 2.CJ Foods R&DSeoulSouth Korea

Personalised recommendations