Genes & Nutrition

, Volume 2, Issue 4, pp 313–317

NF-κB and Nrf2 as prime molecular targets for chemoprevention and cytoprotection with anti-inflammatory and antioxidant phytochemicals

Review

References

  1. 1.
    Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780PubMedCrossRefGoogle Scholar
  2. 2.
    Philip M, Rowley DA, Schreiber H (2004) Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 14:433–439PubMedCrossRefGoogle Scholar
  3. 3.
    Surh YJ, Kundu JK, Na HK, Lee JS (2005) Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135:2993S–3001SPubMedGoogle Scholar
  4. 4.
    Lee JS, Surh YJ (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224:171–184PubMedCrossRefGoogle Scholar
  5. 5.
    Yu X, Kensler T (2005) Nrf2 as a target for cancer chemoprevention. Mutat Res 591:93–102PubMedGoogle Scholar
  6. 6.
    Dinkova-Kostova AT, Holtzclaw WD, Wakabayashi N (2005) Keap1, the sensor for electrophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein. Biochemistry 44:6889–6899PubMedCrossRefGoogle Scholar
  7. 7.
    Chen XL, Dodd G, Thomas S, Zhang X, Wasserman MA, Rovin BH, Kunsch C (2006) Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol 290:H1862–H1870PubMedCrossRefGoogle Scholar
  8. 8.
    Chen XL, Kunsch C (2004) Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr Pharm Des 10:879–891PubMedCrossRefGoogle Scholar
  9. 9.
    Khor TO, Huang MT, Kwon KH, Chan JY, Reddy BS, Kong AN (2006) Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res 66:11580–11584PubMedCrossRefGoogle Scholar
  10. 10.
    Li N, Nel AE (2006) Role of the Nrf2-mediated signaling pathway as a negative regulator of inflammation: implications for the impact of particulate pollutants on asthma. Antioxid Redox Signal 8:88–98PubMedCrossRefGoogle Scholar
  11. 11.
    Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72:1439–1452PubMedCrossRefGoogle Scholar
  12. 12.
    Yates MS, Kensler TW (2007) Chemopreventive promise of targeting the Nrf2 pathway. Drug News Perspect 20:109–117PubMedCrossRefGoogle Scholar
  13. 13.
    Chun KS, Keum YS, Han SS, Song YS, Kim SH, Surh YJ (2003) Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-κB activation. Carcinogenesis 24:1515–1524PubMedCrossRefGoogle Scholar
  14. 14.
    Park KK, Chun KS, Lee JM, Lee SS, Surh YJ (1998) Inhibitory effects of [6]-gingerol, a major pungent principle of ginger, on phorbol ester-induced inflammation, epidermal ornithine decarboxylase activity and skin tumor promotion in ICR mice. Cancer Lett 129:139–144PubMedCrossRefGoogle Scholar
  15. 15.
    Kim SO, Kundu JK, Shin YK, Park JH, Cho MH, Kim TY, Surh YJ (2005) [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-κB in phorbol ester-stimulated mouse skin. Oncogene 24:2558–2567PubMedCrossRefGoogle Scholar
  16. 16.
    Bode AM, Ma WY, Surh Y-J, Dong Z (2001) Inhibition of epidermal growth factor-induced cell transformation and activator protein 1 activation by [6]-gingerol. Cancer Res 61:850–853PubMedGoogle Scholar
  17. 17.
    Kim JK, Kim Y, Na KM, Surh YJ, Kim TY (2007) [6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo. Free Radic Res 41:603–614PubMedCrossRefGoogle Scholar
  18. 18.
    Han SS, Keum YS, Seo HJ, Chun KS, Lee SS, Surh YJ (2001) Capsaicin suppresses phorbol ester-induced activation of NF-κB/Rel and AP-1 transcription factors in mouse epidermis. Cancer Lett 164:119–126PubMedCrossRefGoogle Scholar
  19. 19.
    Han SS, Keum YS, Chun KS, Surh YJ (2002) Suppression of phorbol ester-induced NF-κB activation by capsaicin in cultured human promyelocytic leukemia cells. Arch Pharm Res 25:475–479PubMedCrossRefGoogle Scholar
  20. 20.
    Singh S, Nataraja K, Aggarwal BB (1996) Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a potent inhibitor of nuclear transcription factor-κB activation by diverse agents. J Immunol 157:4412–4420PubMedGoogle Scholar
  21. 21.
    Kundu JK, Shin YK, Kim SH, Surh YJ (2006) Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-κB in mouse skin by blocking IκB kinase activity. Carcinogenesis 27:1465–1474PubMedCrossRefGoogle Scholar
  22. 22.
    Chen CY, Jang JH, Li MH, Surh YJ (2005) Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun 331:993–1000PubMedCrossRefGoogle Scholar
  23. 23.
    Kundu JK, Na HK, Chun KS Kim YK, Lee SJ, Lee SS, Lee OS, Sim YC, Surh YJ (2003) Inhibition of phorbol ester-induced COX-2 expression by epigallocatechin gallate in mouse skin and cultured human mammary epithelial cells. J Nutr 133:3805S–3810SPubMedGoogle Scholar
  24. 24.
    We CC, Hsu MC, Hsieh CW, Lin JB, Lai PH, Wung BS (2006) Upregulation of heme oxygenase-1 by Epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/AkT and ERK pathways. Life Sci 78:2889–2897CrossRefGoogle Scholar
  25. 25.
    Shen G, Xu C, Hu R, Jain MR, Nair S, Lin W, Yang CS, Chan JY, Kong AN (2005) Comparison of (-)-epigallocatechin-3-gallate elicited liver and small intestine gene expression profiles between C57BL/6J mice and C57BL/6J/Nrf2 (-/-) mice. Pharmacol Res 22:1805–1820CrossRefGoogle Scholar
  26. 26.
    Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127PubMedCrossRefGoogle Scholar
  27. 27.
    Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 99:11908–11913PubMedCrossRefGoogle Scholar
  28. 28.
    Hong F, Freeman ML, Liebler DC (2005) Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol 18:1917–1926PubMedCrossRefGoogle Scholar
  29. 29.
    Myzak MC, Dashwood RH (2006) Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Lett 233:208–218PubMedCrossRefGoogle Scholar
  30. 30.
    Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C (2001) Nuclear factor κB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276:32008–32015PubMedCrossRefGoogle Scholar
  31. 31.
    Kim HN, Na HK, Kim EH, Surh YJ (2007) Proc Am Assoc Cancer ResGoogle Scholar
  32. 32.
    Heiss E, Gerhauser C (2005) Time-dependent modulation of thioredoxin reductase activity might contribute to sulforaphane-mediated inhibition of NF-κB binding to DNA. Antioxid Redox Signal 7:1601–1611PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of PharmacySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations