Exogenous Glucose Promotes Growth and Pectinase Activity of Bacillus licheniformis DY2 Through Frustrating the TCA Cycle

  • Xi Du
  • Donghuang Wang
  • Di Yin
  • Yi GuanEmail author
  • Xiuyun YeEmail author
Research Paper


Microbial pectinases are important sources due to the ease of production and unique physicochemical properties. Here, DY2, a strain of Bacillus licheniformis, was identified from 14 strains of bacteria as a pectinase-producing bacterium with good application potential. Optimized carbon sources of submerged fermentation led to the identification of glucose as an ideal carbon source for activity and production of P-DY2, the pectinase produced by DY2. GC-MS based metabolomics was used to explore metabolic mechanisms mediated by glucose, showing the frustrated TCA cycle is necessary to elevate the activity and production of P-DY2. Decreased activity of α-ketoglutaric dehydrogenase and succinate dehydrogenase of DY2 in glucose-treated samples supports the conclusion that P-DY2 production is the TCA cycle-independent. These results reveal a metabolic mechanism of high-activity pectinase mediated by exogenous glucose. These findings highlight the way to understand metabolic mechanisms and promote pectinase yield through metabolomics approach and metabolic modulation, respectively.


pectinase glucose TCA cycle enzyme activity metabolites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Natural Science Foundation of China (31701844), Natural Science Foundation of Fujian province (2018J05057) and Foundation of Fujian Educational Bureau (JAT170078).


  1. 1.
    Rebello, S., M. Anju, E. M. Aneesh, R. Sindhu, P. Binod, and A. Pandey (2017) Recent advancements in the production and application of microbial pectinases: an overview. Rev. Environ. Sci. Biotechnol. 16: 381–394.CrossRefGoogle Scholar
  2. 2.
    Hoondal, G. S., R. P. Tiwari, R. Tewari, N. Dahiya, and Q. K. Beg (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 59: 409–418.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Jayani, R. S., S. Saxena, and R. Gupta (2005) Microbial pectinolytic enzymes: A review. Process Biochem. 40: 2931–2944.CrossRefGoogle Scholar
  4. 4.
    Favela-Torres, E., T. Volke-Sepúlveda, and G. Viniegra-González (2006) Production of hydrolytic depolymerising pectinases. Food Technol. Biotechnol. 44: 221–227.Google Scholar
  5. 5.
    Maisuria, V. B. and A. S. Nerurkar (2012) Biochemical properties and thermal behavior of pectate lyase produced by Pectobacterium carotovorum subsp. carotovorum BR1 with industrial potentials. Biochem. Eng. J. 63: 22–30.CrossRefGoogle Scholar
  6. 6.
    Mukhopadhyay, A., N. Dutta, D. Chattopadhyay, and K. Chakrabarti (2013) Degumming of ramie fiber and the production of reducing sugars from waste peels using nanoparticle supplemented pectate lyase. Bioresour. Technol. 137: 202–208.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kashyap, D. R., P. K. Vohra, S. Chopra, and R. Tewari (2001) Applications of pectinases in the commercial sector: a review. Bioresour. Technol. 77: 215–227.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kohli, P. and R. Gupta (2015) Alkaline pectinases: a review. Biocatal Agric. Biotechnol. 4: 279–285.CrossRefGoogle Scholar
  9. 9.
    Akinyemi, B. T., O. M. Buraimoh, O. O. Ogunrinde, and O. O. Amund (2017) Pectinase production by Bacillus and Paenibacillus sp. isolated from decomposing wood residues in the lagos lagoon. J. Trop. Life Sci. 7: 204–207.CrossRefGoogle Scholar
  10. 10.
    Uzuner, S. and D. Cekmecelioglu (2015) Enhanced pectinase production by optimizing fermentation conditions of Bacillus subtilis growing on hazelnut shell hydrolyzate. J. Mol. Catal. B Enzym. 113: 62–67.CrossRefGoogle Scholar
  11. 11.
    Bibi, N., S. Ali, and R. Tabassum (2016) Statistical optimization of pectinase biosynthesis from orange peel by Bacillus licheniformis using submerged fermentation. Waste Biomass Valor. 7: 467–481.CrossRefGoogle Scholar
  12. 12.
    Utami, R., E. Widowati, A. Ivenaria, and E. Mahajoeno (2017) Polygalacturonase production by AR2 pectinolytic bacteria through submerged fermentation of raja nangka banana peel (Musa paradisiaca var. formatypica) with variation of carbon source and pectin. IOP Conf. Ser. Mater. Sci. Eng. 193: 012005.CrossRefGoogle Scholar
  13. 13.
    Bhardwaj, V. and N. Garg (2014) Pectinase production by Delftia acidovorans isolated from fruit waste under submerged fermentation. Int. J. Sci. Res. 3: 261–265.Google Scholar
  14. 14.
    Peng, B., H. Li, and X. X. Peng (2015) Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein Cell. 6: 628–637.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Peng, B., Y. B. Su, H. Li, Y. Han, C. Guo, Y. M. Tian, and X. X. Peng (2015) Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab. 21: 249–262.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Earl, D. C., P. B. Ferrell, Jr., N. Leelatian, J. T. Froese, B. J. Reisman, J. M. Irish, and B. O. Bachmann (2018) Discovery of human cell selective effector molecules using single cell multiplexed activity metabolomics. Nat. Commun. 9: 39.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Yang, M. J., Z. X. Cheng, M. Jiang, Z. H. Zeng, B. Peng, X. X. Peng, and H. Li (2018) Boosted TCA cycle enhances survival of zebrafish to Vibrio alginolyticus infection. Virulence. 9: 634–644.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Zeng, Z. H., C. C. Du, S. R. Liu, H. Li, X. X. Peng, and B. Peng (2017) Glucose enhances tilapia against Edwardsiella tarda infection through metabolome reprogramming. Fish Shellfish Immunol. 61: 34–43.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Chen, X. H., S. R. Liu, B. Peng, D. Li, Z. X. Cheng, J. X. Zhu, S. Zhang, Y. M. Peng, H. Li, T. T. Zhang, and X. X. Peng (2017) Exogenous l-Valine promotes phagocytosis to kill multidrug-resistant bacterial pathogens. Front. Immunol. 8: 207.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Du, C. C., M. J. Yang, M. Y. Li, J. Yang, B. Peng, H. Li, and X. X. Peng (2017) Metabolic mechanism for l-Leucine-induced metabolome to eliminate Streptococcus iniae. J. Proteome Res. 16: 1880–1889.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Schelli, K., F. Zhong, and J. Zhu (2017) Comparative metabolomics revealing Staphylococcus aureus metabolic response to different antibiotics. Microb. Biotechnol. 10: 1764–1774.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cheng, Z. X., Q. Y. Gong, Z. Wang, Z. G. Chen, J. Z. Ye, J. Li, J. Wang, M. J. Yang, X. P. Ling, and B. Peng (2017) Edwardsiella tarda tunes tricarboxylic acid cycle to evade complement-mediated killing. Front. Immunol. 8: 1706.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yang, J., Z. H. Zeng, M. J. Yang, Z. X. Cheng, X. X. Peng, and H. Li (2018) NaCl promotes antibiotic resistance by reducing redox states in Vibrio alginolyticus. Environ. Microbiol. 20: 4022–4036.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wu, C. W., X. L. Zhao, X. J. Wu, C. Wen, H. Li, X. H. Chen, and X. X. Peng (2015) Exogenous glycine and serine promote growth and antifungal activity of Penicillium citrinum W1 from the south-west Indian Ocean. FEMS Microbiol. Lett. 362: fnv040.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Wu, C. W., X. Wu, C. Wen, B. Peng, X. X. Peng, X. Chen, and H. Li (2016) Fructose promotes growth and antifungal activity of Penicillium citrinum. Protein Cell. 7: 527–532.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Liu, S. R., X. X. Peng, and H. Li (2019) Metabolic mechanism of ceftazidime resistance in Vibrio alginolyticus. Infect. Drug Resist. 12: 417–429.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cheng, Z. X., M. J. Yang, B. Peng, X. X. Peng, X. M. Lin, and H. Li (2018) The depressed central carbon and energy metabolisms is associated to the acquisition of levofloxacin resistance in Vibrio alginolyticus. J. Proteomics. 181: 83–91.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Su, Y. B., B. Peng, H. Li, Z. Cheng, T. Zhang, J. Zhu, D. Li, M. Li, J. Ye, C. Du, S. Zhang, X. Zhao, M. Yang, and X. Peng (2018) Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc. Natl. Acad. Sci. USA. 115: E1578–E1587.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Guan, Y., D. Yin, X. Du, and X. Ye (2018) Functional metabolomics approach reveals the reduced biosynthesis of fatty acids and TCA cycle is required for pectinase activity in Bacillus licheniformis. J. Ind. Microbiol. Biotechnol. 45: 951–960.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Guan, Y., D. Yin, X. Du, and X. Ye (2018) Metabolomics approach used for understanding temperature-related pectinase activity in Bacillus licheniformis DY2. FEMS Microbiol. Lett. 365: fny255.Google Scholar
  31. 31.
    Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zhou, C., J. Ye, Y. Xue, and Y. Ma (2015) Directed evolution and structural analysis of alkaline pectate lyase from the alkaliphilic bacterium Bacillus sp. strain N16-5 to improve its thermostability for efficient ramie degumming. Appl. Environ. Microbiol. 81: 5714–5723.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wang, Z., M. Y. Li, B. Peng, Z. X. Cheng, H. Li, and X. X. Peng (2016) GC-MS-based metabolome and metabolite regulation in serum-resistant Streptococcus agalactiae. J. Proteome Res. 15: 2246–2253.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Joshi, M., M. Nerurkar, and R. Adivarekar (2013) Use of citrus limetta peels for pectinase production by marine bacillus subtilis. Innov. Rom. Food Biotechnol. 12: 75–83.Google Scholar
  35. 35.
    Su, Y. B., B. Peng, Y. Han, H. Li, and X. X. Peng (2015) Fructose restores susceptibility of multidrug-resistant Edwardsiella tarda to kanamycin. J. Proteome Res. 14: 1612–1620.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kashyap, D. R., S. Chandra, A. Kaul, and R. Tewari (2009) Production, purification and characterization of pectinase from a Bacillus sp. DT7. World J. Microbiol. Biotechnol. 16: 277–282.CrossRefGoogle Scholar
  37. 37.
    Sunnotel, O. and P. Nigam (2000) Pectinolytic activity of bacteria isolated from soil and two fungal strains during submerged fermentation. World J. Microbiol. Biotechnol. 18: 835–839.CrossRefGoogle Scholar
  38. 38.
    Ahmeda, I., M. A. Zia, M. A. Hussain, Z. Akram, M. T. Naveed, and A. Nowrouzi (2016) Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization. J. Radiat. Res. Appl. Sci. 9: 148–154.CrossRefGoogle Scholar
  39. 39.
    Irshad, M., Z. Anwar, Z. Mahmood, T. Aqil, S. Mehmmod, and H. Nawaz (2014) Bio-processing of agro-industrial waste orange peel for induced production of pectinase by Trichoderma viridi; its purification and characterization. Turk. J. Biochem. 39: 9–18.CrossRefGoogle Scholar
  40. 40.
    Yu, P., Y. Zhang, and D. Gu (2017) Production optimization of a heat-tolerant alkaline pectinase from Bacillus subtilis ZGL14 and its purification and characterization. Bioengineered. 8: 613–623.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gauthwal, M., D. Dahiya, and B. Battan (2015) Potential of a Bacillus aerius pectinase in fruit juice clarification produced by submerged fermentation using agri-residues. Int. J. Adv. Biotechnol. Res. 6: 394–400.Google Scholar
  42. 42.
    Sharma, D. C. and T. Satyanarayana (2006) A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged fermentation by using statistical methods. Bioresour. Technol. 97: 727–33.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Guo, C., X. Y. Huang, M. J. Yang, S. Wang, S. T. Ren, H. Li, and X. X. Peng (2014) GC/MS-based metabolomics approach to identify biomarkers differentiating survivals from death in crucian carps infected by Edwardsiella tarda. Fish Shellfish Immunol. 39: 215–222.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zhao, X. L., Y. Han, S. T. Ren, Y. M. Ma, H. Li, and X. X. Peng (2015) L-proline increases survival of tilapias infected by Streptococcus agalactiae in higher water temperature. Fish Shellfish Immunol. 44: 33–42.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Khakimov, B., L. D. Christiansen, A. L. Heins, K. M. Sorensen, C. Scholler, A. Clausen, T. Skov, K. V. Gernaey, and S. B. Engelsen (2017) Untargeted GC-MS metabolomics reveals changes in the metabolite dynamics of industrial scale batch fermentations of Streptoccoccus thermophilus broth. Biotechnol. J. 12: 170040.CrossRefGoogle Scholar
  46. 46.
    Guasch-Ferre, M., S. N. Bhupathiraju, and F. B. Hu (2018) Use of metabolomics in improving assessment of dietary intake. Clin. Chem. 64: 82–98.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  1. 1.Fujian Key Laboratory of Marine Enzyme EngineeringFuzhou UniversityFuzhou, FujianChina
  2. 2.College of Biological Sciences and TechnologyFuzhou UniversityFuzhou, FujianChina

Personalised recommendations