Biotechnology and Bioprocess Engineering

, Volume 24, Issue 1, pp 8–11 | Cite as

Molecular-level Antibody Repertoire Profiling and Engineering: Implications for Developing Next-generation Diagnostics, Therapeutics, and Vaccines

  • Jiwon LeeEmail author


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weinstein, J. A., N. Jiang, R. A. White, 3rd, D. S. Fisher, and S. R. Quake (2009) High-throughput sequencing of the zebrafish antibody repertoire. Science. 324: 807–810.CrossRefGoogle Scholar
  2. 2.
    Georgiou, G., G. C. Ippolito, J. Beausang, C. E. Busse, H. Wardemann, and S. R. Quake (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat. Biotechnol. 32: 158–168.CrossRefGoogle Scholar
  3. 3.
    Lee, J., D. R. Boutz, V. Chromikova, M. G. Joyce, C. Vollmers, K. Leung, A. P. Horton, B. J. DeKosky, C.-H. Lee, J. J. Lavinder, E. M. Murrin, C. Chrysostomou, K. H. Hoi, Y. Tsybovsky, P. V. Thomas, A. Druz, B. Zhang, Y. Zhang, L. Wang, W.-P. Kong, D. Park, L. I. Popova, C. L. Dekker, M. M. Davis, C. E. Carter, T. M. Ross, A. D. Ellington, P. C. Wilson, E. M. Marcotte, J. R. Mascola, G. C. Ippolito, F. Krammer, S. R. Quake, P. D. Kwong, and G. Georgiou (2016) Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat. Med. 22: 1456–1464.CrossRefGoogle Scholar
  4. 4.
    Park, H. I., H. W. Yoon, and S. T. Jung (2016) The highly evolvable antibody Fc domain. Trends. Biotechnol. 34: 895–908.CrossRefGoogle Scholar
  5. 5.
    Xu, L., A. Pegu, E. Rao, N. Doria-Rose, J. Beninga, K. McKee, D. M. Lord, R. R. Wei, G. Deng, M. Louder, S. D. Schmidt, Z. Mankoff, L. Wu, M. Asokan, C. Beil, C. Lange, W. D. Leuschner, J. Kruip, R. Sendak, Y. Do Kwon, T. Zhou, X. Chen, R. T. Bailer, K. Wang, M. Choe, L. J. Tartaglia, D. H. Barouch, S. O’Dell, J.-P. Todd, D. R. Burton, M. Roederer, M. Connors, R. A. Koup, P. D. Kwong, Z.-y. Yang, J. R. Mascola, and G. J. Nabel (2017) Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science. 358: 85–90.CrossRefGoogle Scholar
  6. 6.
    Sondermann, P., and D. E. Szymkowski (2016) Harnessing Fc receptor biology in the design of therapeutic antibodies. Curr. Opin. Immunol. 40: 78–87.CrossRefGoogle Scholar
  7. 7.
    Strohl, W. R. (2018) Current progress in innovative engineered antibodies. Protein Cell. 9: 86–120.CrossRefGoogle Scholar
  8. 8.
    Lanzavecchia, A., A. Frühwirth, L. Perez, and D. Corti (2016) Antibody-guided vaccine design: identification of protective epitopes. Curr. Opin. Immunol. 41: 62–67.CrossRefGoogle Scholar
  9. 9.
    Kwong, P. D., and J. R. Mascola (2018) HIV-1 Vaccines based on antibody identification, B cell ontogeny, and epitope structure. Immunity. 48: 855–871.CrossRefGoogle Scholar
  10. 10.
    Burton, D. R. (2017) What are the most powerful immunogen design vaccine strategies? Reverse vaccinology 2.0 shows great promise. Cold Spring Harb. Perspect. Biol. 9: a030262.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA
  3. 3.Thayer School of EngineeringDartmouth CollegeHanoverUSA

Personalised recommendations