Biotechnology and Bioprocess Engineering

, Volume 24, Issue 2, pp 401–412 | Cite as

A Mild Thermal Pre-treatment of the Organic Fraction of Municipal Wastes Allows High Ethanol Production by Direct Solid-state Fermentation

  • R. Estrada-Martínez
  • E. Favela-Torres
  • N. O. Soto-Cruz
  • H. B. Escalona-Buendía
  • G. Saucedo-CastañedaEmail author
Research Paper


A solid standard mixture (SSM) representing the annual composition of fresh fruits and vegetables residues generated at the Supply Center in Mexico City was used for bioethanol production. This type of residues allows bioethanol production with a single thermal pre-treatment instead of hard thermochemical or enzymatic treatments. The release of fermentable carbohydrates from the SSM by a mild thermal pretreatment was firstly optimized. After that, mixed and single cultures of Saccharomyces cerevisiae, Scheffersomyces stipitis, and Schwanniomyces occidentalis were evaluated for bioethanol production. The maximum ethanol production, 282.61 ± 13.09 L ethanol per ton of dry matter (DM), was reached using a severity factor (SF) of 2.35 and a mixed culture composed of Saccharomyces cerevisiae, Scheffersomyces stipitis, and Schwanniomyces occidentalis. The improved lab scale conditions were evaluated in a pilot scale (18 Kg) stirred bioreactor with an SF of 2.35 and the mixed culture, obtaining 245.72 ± 17.76 L ethanol per ton DM. The obtained results demonstrate for the first time the use of fresh fruits and vegetables residues for bioethanol production under solid-state culture conditions without any thermochemical or enzymatic pre-treatment.


organic fraction of municipal solid wastes thermal pre-treatment solid-state culture bioethanol production helical ribbons rotating bioreactor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to CONACYT, Mexico, for the research funding of PDCPN-2013/215467, and RJEM acknowledges the PhD scholarship (No. 265441) from CONACYT, Mexico.


  1. 1.
    Kumar Saini, J., R. Saini, and L. Tewari (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. Biotech. 5: 337–353.Google Scholar
  2. 2.
    Akbas, M. Y. and B. C. Stark (2016) Recent trends in bioethanol production from food processing byproducts. J. Ind. Microbiol. Biotechnol. 43: 1593–1609.CrossRefGoogle Scholar
  3. 3.
    Gupta, A. and J. P. Verma (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev. 41: 550–567.CrossRefGoogle Scholar
  4. 4.
    Ballesteros, M., F. Saez, I. Ballesteros, P. Manzanares, M. J. Negro, J. M. Martinez, R. Castañeda, and J. M. Dominguez (2010) Ethanol production from the organic fraction obtained after thermal pre-treatment of municipal solid waste. Appl. Biochem. Biotechnol. 161: 423–431.CrossRefGoogle Scholar
  5. 5.
    Schmitt, E., R. Bura, R. Gustafson, J. Cooper, and A. Vajzovic (2012) Converting lignocellulosic solid waste into ethanol for the State of Washington: an investigation of treatment technologies and environmental impacts. Bioresour. Technol. 104: 400–409.CrossRefGoogle Scholar
  6. 6.
    Martínez-Valdez, F., C. Martínez-Ramírez, L. Martínez-Montiel, E. Favela-Torres, N. Soto-Cruz, F. Ramírez-Vives, and G. Saucedo-Castañeda (2015) Rapid mineralisation of the organic fraction of municipal solid waste. Bioresour. Technol. 180: 112–118.CrossRefGoogle Scholar
  7. 7.
    Uçkun Kiran, E., A. P. Trzcinski, W. Jern Ng, and Y. Liu (2014) Bioconversion of food waste to energy: a review. Fuel. 134: 389–399.CrossRefGoogle Scholar
  8. 8.
    Schimer-Michel, A., S. Flores, P. Hertz, G. Matos, and M. Ayub (2008) Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Bioresour. Technol. 99: 2898–2904.CrossRefGoogle Scholar
  9. 9.
    Cesaro, A. and V. Belgiorno (2014) Pre-treatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem. Eng. J. 240: 24–37.CrossRefGoogle Scholar
  10. 10.
    Li, A., B. Antizar-Ladislao, and M. Khraisheh (2007) Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst. Eng. 30: 189–196.CrossRefGoogle Scholar
  11. 11.
    Palmqvist, E., J. Almeida, and B. Hahn-Hägerdal (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol. Bioeng. 62: 447–454.CrossRefGoogle Scholar
  12. 12.
    Taherzadeh, M. J., L. Gustafsson, C. Niklasson, and G. Lidén (2000) Physiological effects of 5-hydroxymethyl furfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53: 701–708.CrossRefGoogle Scholar
  13. 13.
    Negro, M. J., C. Alvarez, I. Ballesteros, I. Romero, M. Ballesteros, E. Castro, P. Manzanares, M. Moya, and J. M. Oliva (2014) Ethanol production from glucose and xylose obtained from steam exploded water-extracted olive tree pruning using phosphoric and as catalyst. Bioresour. Technol. 153: 101–107.CrossRefGoogle Scholar
  14. 14.
    Zhi-Min, Z., W. Lan, and C. Hong-Zhang (2015) A novel steam explosion sterilization improving solid-state fermentation performance. Bioresour. Technol. 192: 547–555.CrossRefGoogle Scholar
  15. 15.
    Pandey, A. (2003) Solid-state fermentation. Biochem. Eng J. 13: 81–84.CrossRefGoogle Scholar
  16. 16.
    Kuhad, R. C., R. Gupta, Y. P. Khasa, A. Singh, and Y. H. P. Zhang (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew. Sustain Energy Rev. 15: 4950–4962.CrossRefGoogle Scholar
  17. 17.
    Tang, Y-Q., Y. Koike, K. Liu, M-Z. An, S. Morimura, X-L. Wu, and K. Kida (2008) Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass Bioenerg. 32: 1037–1045.CrossRefGoogle Scholar
  18. 18.
    Jeong, S., Y. Kim, and D. Lee (2012) Ethanol production by co-fermentation of hexose and pentose from food wastes using Saccharomyces coreanus and Pichia stipitis. Korean J. Chem. Eng. 29: 1038–1043.CrossRefGoogle Scholar
  19. 19.
    Bader, J., E. Mast-Gerlach, M. K. Popovic, R. Bajpai, and U. Stahl (2010) Relevance of microbial coculture fermentations in biotechnology. J. Appl. Microbiol. 109: 371–387.CrossRefGoogle Scholar
  20. 20.
    Saucedo-Castañeda, G., B. K. Lonsane, J. M. Navarro, S. Roussos, and M. Raimbault (1992) Potential of using a single fermenter for biomass build-up, starch hydrolysis, and ethanol production. Appl. Biochem. Biotechnol. 36: 47–61.CrossRefGoogle Scholar
  21. 21.
    Arora, S., R. Rani, and S. Ghosh (2008) Bioreactors in solid state fermentation technology: Design, applications and engineering aspects: A review. J. Biotechnol. 269: 16–34.CrossRefGoogle Scholar
  22. 22.
    Pandey, A. (1991) Aspects of fermenter design for solid state fermentations. Process Biochem. 26: 355–361.CrossRefGoogle Scholar
  23. 23.
    Nava, I., I. Gaime-Perraud, S. Huerta-Ochoa, E. Favela-Torres, and G. Saucedo-Castañeda (2006) Penicillium commune spore production in solid-state fermentation of coffee pulp at laboratory scale and in a helical ribbon rotating reactor. J. Chem. Technol. Biotechnol. 81: 1760–1766.CrossRefGoogle Scholar
  24. 24.
    Diaz-Campillo, M., N. Urtíz, Ó. Soto, E. Barrio, M. Rutiaga, and J. Páez (2012) Effect of glucose concentration on the rate of fructose consumption in native strains isolated from the fermentation of Agave duranguensis. World J. Microbiol. Biotechnol. 28: 3387–3391.CrossRefGoogle Scholar
  25. 25.
    Overend, R. P., E. Chornet, and J. A. Gascoigne (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil. Trans. R Soc. A. 321: 523–536.CrossRefGoogle Scholar
  26. 26.
    Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Croker (2011) Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618. National Renewable Energy Laboratory. Golden, USA.Google Scholar
  27. 27.
    Sluiter, A., B. Hames, D. Hyman, C. Payne, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and J. Wolfe (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. Technical Report NREL/TP-510-42621. National Renewable Energy Laboratory. Golden, USA.Google Scholar
  28. 28.
    Bradley, R. L. Jr. (2010) Moisture and total solids analysis. pp. 17–27. In: Nielsen, S. S. (ed.) Food analysis, 4th edn. Springer, New York.Google Scholar
  29. 29.
    Saucedo-Castañeda, G., M. R. Trejo-Hernández, B. K. Lonsane, J. M. Navarro, S. Roussos, D. Dufour, and M. Raimbault (1994) On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentation. Process Biochem. 29: 13–24.CrossRefGoogle Scholar
  30. 30.
    Levenspiel, O. (1999) Chemical Reaction Engineering. 3rd edn. pp. 4140–4143. Wiley, New York.Google Scholar
  31. 31.
    Uçkun Kiran, E. and Y. Liu (2015) Bioethanol production from mixed food waste by and effective enzymatic pre-treatment. Fuel. 159: 463–469.CrossRefGoogle Scholar
  32. 32.
    Maiorella, B., H. W. Blanch, and C. R. Wilke (1983) By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotech. Bioeng. 25: 103–121.CrossRefGoogle Scholar
  33. 33.
    Bellido, C., S. Bolado, M. Coca, G. Gonzalez-Benito, and M. T. García-Cubero (2011) Effect of inhibitors formed during wheat straw pre-treatment on ethanol fermentation by Pichia stipitis. Bioresour Technol. 102: 10868–10874.CrossRefGoogle Scholar
  34. 34.
    Horn, C. H., J. C. du Preez, and S. G. Kilian (1992) Fermentation of grain sorghum starch by co-cultivation of Schwanniomyces occidentalis and Saccharomyces cerevisiae. Bioresour Technol. 42: 27–31.CrossRefGoogle Scholar
  35. 35.
    Kim, J. K., B. R. Oh, H.-J. Shin, C.-Y. Eom, and S. W. Kim (2008) Statistical optimization of enzymatic saccharification and ethanol fermentation using food waste. Process Biochem. 43: 1308–1312.CrossRefGoogle Scholar
  36. 36.
    Wang, Q., H. Ma, W. Xu, L. Gong, W. Zhang, and D. Zou (2008) Ethanol production from kitchen garbage using response surface methodology. Biochem Eng J. 39 (3): 604–610.CrossRefGoogle Scholar
  37. 37.
    Uncu, O. N. and D. Cekmecelioglu (2011) Cost-effective approach to ethanol production and optimization by response surface methodology. Waste Manage. 31 (4): 636–643.CrossRefGoogle Scholar
  38. 38.
    Boluda-Aguilar, M. and A. López-Gómez (2013) Production of bioethanol by fermentation of lemon (Citrus limon L.) peel wastes pre-treated with steam explosion. Ind Crop Prod. 41: 188–197.CrossRefGoogle Scholar
  39. 39.
    Canabarro, N., C. Alessio, E. Foletto, R. Kuhn, W. Priamo, and M. Mazutti (2017) Ethanol production by solid-state saccharification and fermentation in a packed-bed bioreactor. Renew Energy. 102: 9–14.CrossRefGoogle Scholar
  40. 40.
    Salemdeeb, R., E. K. H. J. zu Ermgassen, M. H. Kim, A. Balmford, and A. Al-Tabbaa (2017) Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. J Clean Prod. 140: 871–880.CrossRefGoogle Scholar
  41. 41.
    Mazaheri, D., S. A. Shojaosadati, P. Hejazi, and S. M. Mousavi (2015) Bioethanol production performance in a packed bed solid-state fermenter: evaluation of operational factors and intermittent aeration strategies. Ann Microbiol. 65: 351–357.CrossRefGoogle Scholar
  42. 42.
    Jeong, H., Y-C. Park, Y-J. Seong, and S. M. Lee (2018) Sugar and ethanol production from woody biomass via supercritical water hydrolysis in a continuous pilot-scale system using acid catalyst. Bioresour Technol. 245: 351–357.CrossRefGoogle Scholar
  43. 43.
    Li, S., G. Li, L. Zhang, Z. Zhou, B. Han, W. Hou, J. Wang, and T. Li (2013) A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl Energ. 102: 260–265.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • R. Estrada-Martínez
    • 1
  • E. Favela-Torres
    • 1
  • N. O. Soto-Cruz
    • 2
  • H. B. Escalona-Buendía
    • 1
  • G. Saucedo-Castañeda
    • 1
    Email author
  1. 1.Iztapalapa Campus, Biotechnology DepartmentMetropolitan Autonomous UniversityMexico CityMexico
  2. 2.Durango Institute of TechnologyDurango, DurangoMexico

Personalised recommendations