Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 2, pp 359–365 | Cite as

Inhibitory Effects of Honokiol and Magnolol on Biofilm Formation by Acinetobacter baumannii

  • Sagar Kiran Khadke
  • Jin-Hyung Lee
  • Je-Tae Woo
  • Jintae LeeEmail author
Research Paper

Abstract

Acinetobacter baumannii is a nosocomial pathogen that can survive unfavorable conditions, such as, desiccation, nutrient starvation, and antimicrobial treatment, and this is primarily due to its ability to form biofilms on biotic and abiotic surfaces like tissues and medical devices. In this study, honokiol and magnolol were investigated for antibiofilm activity against A. baumannii ATCC 17978. Both were found to inhibit biofilm formation dose-dependently and to disperse matured biofilms. Honokiol and magnolol were found to inhibit biofilm formation by five and four of eight additional clinical A. baumannii isolates, respectively. Furthermore, honokiol and magnolol effectively suppressed pellicle formation and the surface motilities of the A. baumannii and prolonged the survival of infected nematode Caenorhabditis elegans. These results demonstrate that honokiol and magnolol may be useful for controlling A. baumannii infections.

Keywords

Acinetobacter baumannii biofilm formation honokiol magnolol motility pellicle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Authors thank Professor Rodolfo Garcia-Contreras at UNAM, Mexico for providing Acinetobacter baumannii strains. This work was supported by the Yeungnam University Research Grant.

References

  1. 1.
    Babapour, E., et al. (2016) Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance. Asian Pac. J. Trop. Biomed. 6: 528–533.CrossRefGoogle Scholar
  2. 2.
    Rajasekharan, S. K., et al. (2017) Antibiofilm and anti-β-lactamase activities of burdock root extract and chlorogenic acid against Klebsiella pneumoniae. J. Microbiol. Biotechnol. 27: 542–551.CrossRefGoogle Scholar
  3. 3.
    Lee, D., et al. (2018) Use of nanoscale materials for the effective prevention and extermination of bacterial biofilms. Biotechnol. Bioprocess Eng. 23: 1–10.CrossRefGoogle Scholar
  4. 4.
    Espinal, P., S. Martí, and J. Vila (2012) Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J. Hosp. Infect. 80: 56–60.CrossRefGoogle Scholar
  5. 5.
    Antunes, L. C., P. Visca, and K. J. Towner (2014) Acinetobacter baumannii: evolution of a global pathogen. Pathog. Dis. 71: 292–301.CrossRefGoogle Scholar
  6. 6.
    Howard, A., et al. (2012) Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence 3: 243–50.CrossRefGoogle Scholar
  7. 7.
    Bergogne-Berezin, E. and K. J. Towner (1996) Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev. 9: 148–65.CrossRefGoogle Scholar
  8. 8.
    Dijkshoorn, L., A. Nemec, and H. Seifert (2007) An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat. Rev. Microbiol. 5: 939–51.CrossRefGoogle Scholar
  9. 9.
    Choi, A.H., et al. (2009) The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-[3-1-6-N-acetylglucosamine, which is critical for biofilm formation. J. Bacteriol. 191: 5953–63.CrossRefGoogle Scholar
  10. 10.
    Iwashkiw, J. A., et al. (2012) Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog. 8: e1002758.CrossRefGoogle Scholar
  11. 11.
    Mikkelsen, H., M. Sivaneson, and A. Filloux (2011) Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ. Microbiol. 13: 1666–81.CrossRefGoogle Scholar
  12. 12.
    Tomaras, A. P., et al. (2003) Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149: 3473–84.CrossRefGoogle Scholar
  13. 13.
    Marti, S., et al. (2011) Growth of Acinetobacter baumannii in pellicle enhanced the expression of potential virulence factors. PLoS One 6: e26030.CrossRefGoogle Scholar
  14. 14.
    Clemmer, K.M., R.A. Bonomo, and P.N. Rather (2011) Genetic analysis of surface motility in Acinetobacter baumannii. Microbiology 157: 2534–44.CrossRefGoogle Scholar
  15. 15.
    Solinski, A. E., et al. (2018) Honokiol-inspired analogs as inhibitors of oral bacteria. ACS Infect. Dis. 4: 118–122.CrossRefGoogle Scholar
  16. 16.
    Kim, Y. S., et al. (2010) Synthesis and microbiological evaluation of honokiol derivatives as new antimicrobial agents. Arch. Pharm. Res. 33: 61–5.CrossRefGoogle Scholar
  17. 17.
    Park, J., et al. (2004) In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. Eur. J. Pharmacol. 496: 189–95.CrossRefGoogle Scholar
  18. 18.
    Sun, L., K. Liao, and D. Wang (2015) Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS One 10: e0117695.CrossRefGoogle Scholar
  19. 19.
    Sakaue, Y., et al. (2016) Anti-biofilm and bactericidal effects of magnolia bark-derived magnolol and honokiol on Streptococcus mutans. Microbiol. Immunol. 60: 10–6.CrossRefGoogle Scholar
  20. 20.
    Zhou, P., et al. (2017) In vitro inhibitory activities of magnolol against Candida spp. Drug Des. Devel. Ther. 11: 2653–2661.CrossRefGoogle Scholar
  21. 21.
    Cruz-Muniz, M. Y., et al. (2017) Repurposing the anticancer drug mitomycin C for the treatment of persistent Acinetobacter baumannii infections. Int. J. Antimicrob. Agents 49: 88–92.CrossRefGoogle Scholar
  22. 22.
    Lee, J. H., et al. (2012) Flavone reduces the production of virulence factors, staphyloxanthin and a-hemolysin, in Staphylococcus aureus. Curr. Microbiol. 65: 726–32.CrossRefGoogle Scholar
  23. 23.
    Syu, W. J., et al. (2004) Antimicrobial and cytotoxic activities of neolignans from Magnolia officinalis. Chem. Biodivers. 1: 530–7.CrossRefGoogle Scholar
  24. 24.
    Lee, J. H., et al. (2014) Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157:H7 and Staphylococcus aureus biofilm formation. Int. J. Food Microbiol. 174: 47–55.CrossRefGoogle Scholar
  25. 25.
    Pour, N. K., et al. (2011) Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol. Med. Microbiol. 62: 328–38.CrossRefGoogle Scholar
  26. 26.
    Manoharan, R. K., et al. (2017) Alizarin and chrysazin inhibit biofilm and hyphal formation by Candida albicans. Front. Cell Infect. Microbiol. 7: 447.CrossRefGoogle Scholar
  27. 27.
    Nait Chabane, Y., et al. (2014) Characterisation of pellicles formed by Acinetobacter baumannii at the air-liquid interface. PLoS One 9: e111660.CrossRefGoogle Scholar
  28. 28.
    Golic, A., et al. (2013) Staring at the cold sun: blue light regulation is distributed within the genus Acinetobacter. PLoS One 8: e55059.CrossRefGoogle Scholar
  29. 29.
    Mussi, M. A., et al. (2010) The opportunistic human pathogen Acinetobacter baumannii senses and responds to light. J. Bacteriol. 192: 6336–45.CrossRefGoogle Scholar
  30. 30.
    Giles, S. K., et al. (2015) Identification of genes essential for pellicle formation in Acinetobacter baumannii. BMC Microbiol. 15: 116.CrossRefGoogle Scholar
  31. 31.
    Eijkelkamp, B. A., et al. (2011) Adherence and motility characteristics of clinical Acinetobacter baumannii isolates. FEMS Microbiol. Lett. 323: 44–51.CrossRefGoogle Scholar
  32. 32.
    Beceiro, A., et al. (2014) Biological cost of different mechanisms of colistin resistance and their impact on virulence in Acinetobacter baumannii. Antimicrob. Agents Chemother. 58: 518–26.CrossRefGoogle Scholar
  33. 33.
    Murphy, C. T., et al. (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424: 277–83.CrossRefGoogle Scholar
  34. 34.
    Rajasekharan, S. K., C. J. Raorane, and J. Lee (2018) LED based real-time survival bioassays for nematode research. Sci. Rep. 8: 11531.CrossRefGoogle Scholar
  35. 35.
    Runci, F., et al. (2017) Acinetobacter baumannii biofilm formation in human serum and disruption by gallium. Antimicrob. Agents Chemother. 61.Google Scholar
  36. 36.
    Yang, M. and C. R. Chitambar (2008) Role of oxidative stress in the induction of metallothionein-2A and heme oxygenase-1 gene expression by the antineoplastic agent gallium nitrate in human lymphoma cells. Free Radic. Biol. Med. 45: 763–72.CrossRefGoogle Scholar
  37. 37.
    Chitambar, C. R. (2016) Gallium and its competing roles with iron in biological systems. Biochim. Biophys. Acta 1863: 2044–53.CrossRefGoogle Scholar
  38. 38.
    Kim, H. I., et al. (2015) In vitro and in vivo antimicrobial efficacy of natural plant-derived compounds against Vibrio cholerae of O1 El Tor Inaba serotype. Biosci. Biotechnol. Biochem. 79: 475–83.CrossRefGoogle Scholar
  39. 39.
    Sun, L., et al. (2017) Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One 12: e0172228.CrossRefGoogle Scholar
  40. 40.
    Luo, L. M., et al. (2015) Enhancing pili assembly and biofilm formation in Acinetobacter baumannii ATCC 19606 using non-native acyl-homoserine lactones. BMC Microbiol. 15: 62.CrossRefGoogle Scholar
  41. 41.
    Kaiser, D. (2007) Bacterial swarming: a re-examination of cell-movement patterns. Curr. Biol. 17: R561–70.Google Scholar
  42. 42.
    Harding, C. M., et al. (2013) Acinetobacter baumannii strain M2 produces type IV pili which play a role in natural transformation and twitching motility but not surface-associated motility. MBio 4.Google Scholar
  43. 43.
    Chen, R., et al. (2017) A1S2811, a CheA/Y-like hybrid two-component regulator from Acinetobacter baumannii ATCC17978, is involved in surface motility and biofilm formation in this bacterium. Microbiologyopen 6.Google Scholar
  44. 44.
    McBride, M. J. (2010) Shining a light on an opportunistic pathogen. J. Bacteriol. 192: 6325–6.CrossRefGoogle Scholar
  45. 45.
    Jayamani, E., et al. (2015) Insect-derived cecropins display activity against Acinetobacter baumannii in a whole-animal high-throughput Caenorhabditis elegans model. Antimicrob. Agents Chemother. 59: 1728–37.CrossRefGoogle Scholar
  46. 46.
    Karki, R., E. R. Jeon, and D. W. Kim (2012) Magnoliae Cortex inhibits intimal thickening of carotid artery through modulation of proliferation and migration of vascular smooth muscle cells. Food Chem. Toxicol. 50: 634–40.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Sagar Kiran Khadke
    • 1
  • Jin-Hyung Lee
    • 1
  • Je-Tae Woo
    • 2
  • Jintae Lee
    • 1
    Email author
  1. 1.School of Chemical EngineeringYeungnam UniversityGyeongsanKorea
  2. 2.Department of Biological ChemistryChubu UniversityKasugai, AichiJapan

Personalised recommendations