Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 2, pp 375–381 | Cite as

Removal of Ni2+ and Cd2+ by Surface Display of Polyhistidine on Bacillus subtilis Spore Using CotE Anchor Protein

  • Wooil Kim
  • Daeun Kim
  • Sanggeun Back
  • Yong-suk Lee
  • Afrouzossadat Hosseini AbariEmail author
  • Junehyung KimEmail author
Research Paper
  • 1 Downloads

Abstract

In this paper, we report removing heavy metal using Bacillus subtilis spore surface display system. We used CotE protein as an anchoring motif because of its high abundance and location in the outer coat layer. And we inserted His12 (double histidine 6 tag) at the C-terminal end of anchoring motif. The proper expression of CotE-His12 fusion protein (22.8 kDa) was confirmed by western blot. We confirmed the surface expression of the CotE-His12 fusion protein using flow cytometry. We tried Ni2+ and Cd2+ adsorption with recombinant spore DB104 (pCotE-His12) and DB104 spore. The amount of adsorbed Ni2+ was 18.2 nmol/mg for DB104 spore and 82.4 nmol/mg for DB104 (pCotE-His12) spore. In the case of Cd2+, the adsorbed amount was 32.6 nmol/mg for DB104 spore and 79.1 nmol/mg for DB104 (pCotE-His12) spore. This means that our spore displayed His12 system can be generally applied for the removal of various kind of heavy metals in the field.

Keyword

Bacillus subtilis spore surface display CotE metal adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

This work was supported by the Dong-A University research fund.

References

  1. 1.
    Hinc, K., S. Ghandili, G. Karbalaee, A. Shali, K. A. Noghabi, E. Ricca, and G. Ahmadian (2010) Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Res. Microbiol. 161: 757–764.CrossRefGoogle Scholar
  2. 2.
    He, Z. L., X. E. Yang, and P. J. Stoffella (2005) Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 19: 125–140.CrossRefGoogle Scholar
  3. 3.
    Ahalya, N., T. Ramachandra, and R. Kanamadi (2003) Biosorption of heavy metals. Res. J. Chem. Environ. 7: 71–79.Google Scholar
  4. 4.
    Fourest, E. and J. C. Roux (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl. Microbiol. Biotechnol. 37: 399–403.CrossRefGoogle Scholar
  5. 5.
    Kratochvil, D. and B. Volesky (1998) Advances in the biosorption of heavy metals. Trends Biotechnol. 16: 291–300.CrossRefGoogle Scholar
  6. 6.
    Kratochvil, D. and B. Volesky (1998) Biosorption of Cu from ferruginous wastewater by algal biomass. Water Res. 32: 2760–2768.CrossRefGoogle Scholar
  7. 7.
    Francisco, J. A., C. F. Earhart, and G. Georgiou (1992) Transport and anchoring of beta-lactamase to the external surface of Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 2713–7.CrossRefGoogle Scholar
  8. 8.
    Ueda M. (2016) Establishment of cell surface engineering and its development. Biosci. Biotechnol. Biochem. 80: 1243–53.CrossRefGoogle Scholar
  9. 9.
    Boder, E. T. and K. D. Wittrup (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15: 553–557.CrossRefGoogle Scholar
  10. 10.
    Jung, H. C., J. M. Lebeault, and J.-G. Pan (1998) Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat. Biotechnol. 16: 576.CrossRefGoogle Scholar
  11. 11.
    Richins, R. D., I. Kaneva, A. Mulchandani, and W. Chen (1997) Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat. Biotechnol. 15: 984.CrossRefGoogle Scholar
  12. 12.
    Sousa, C., A. Cebolla, and V. De Lorenzo (1996) Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat. Biotechnol. 14: 1017–20.CrossRefGoogle Scholar
  13. 13.
    Georgiou, G., C. Stathopoulos, P. S. Daugherty, A. R. Nayak, B. L. Iverson, and R. Curtiss, 3rd (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15: 29–34.CrossRefGoogle Scholar
  14. 14.
    Kim, J. H., C. S. Lee, and B. G. Kim (2005) Spore-displayed streptavidin: a live diagnostic tool in biotechnology. Biochem. Biophys. Res. Commun. 331: 210–214.CrossRefGoogle Scholar
  15. 15.
    Kim, J. H., C. Roh, C. W. Lee, D. Kyung, S. K. Choi, H. C. Jung, J. G. Pan, and B. G. Kim (2007) Bacterial surface display of GFP (uv) on bacillus subtilis spores. J. Microbiol. Biotechnol. 17: 677–680.Google Scholar
  16. 16.
    Kim, J. H., B. G. Kim, S. K. Choi, H. C. Jung, and J. G. Pan (2009) Method for expression of proteins on spore surface. Journal (Issue).Google Scholar
  17. 17.
    Kim, J. and W. Schumann (2009) Display of proteins on Bacillus subtilis endospores. Cell Mol. Life Sci. 66: 3127–3136.CrossRefGoogle Scholar
  18. 18.
    Hwang, B. Y., B. G. Kim, and J. H. Kim (2011) Bacterial surface display of a co-factor containing enzyme, omega-transaminase from Vibrio fluvialis using the Bacillus subtilis spore display system. Biosci. Biotechnol. Biochem. 75: 1862–1865.CrossRefGoogle Scholar
  19. 19.
    Hwang, B. Y., J. G. Pan, B. G. Kim, and J. H. Kim (2013) Functional display of active tetrameric β-galactosidase using Bacillus subtilis spore display system. J. Nanosci. Nanotechnol. 13: 2313–2319.CrossRefGoogle Scholar
  20. 20.
    Richter, A., W. Kim, J. H. Kim, and W. Schumann (2015) Disulfide bonds of proteins displayed on spores of Bacillus subtilis can occur spontaneously. Curr. Microbiol. 71: 156–161.CrossRefGoogle Scholar
  21. 21.
    Hosseini Abari, A., B. G. Kim, S. H. Lee, G. Emtiazi, W. Kim, and J. H. Kim (2016) Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein. J. Basic Microbiol. 56: 1331–1337.CrossRefGoogle Scholar
  22. 22.
    Kim, J. (2017) Surface display of lipolytic enzyme, Lipase A and Lipase B of Bacillus subtilis on the Bacillus subtilis spore. Biotechnol. Bioprocess Eng. 22: 462–468.CrossRefGoogle Scholar
  23. 23.
    Chen, H., J. Ullah, and J. Jia (2017) Progress in Bacillus subtilis spore surface display technology towards environment, vaccine development, and biocatalysis. J. Mol. Microbiol. Biotechnol. 27: 159–167.CrossRefGoogle Scholar
  24. 24.
    Mckenney, P. T., A. Driks, and P. Eichenberger (2013) The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 11: 33–44.CrossRefGoogle Scholar
  25. 25.
    Monroe, A. and P. Setlow (2006) Localization of the transglutaminase cross-linking sites in the Bacillus subtilis spore coat protein GerQ. J. Bacteriol. 188: 7609–7616.CrossRefGoogle Scholar
  26. 26.
    Das, K. K., R. C. Reddy, I. B. Bagoji, S. Das, S. Bagali, L. Mullur, J. P. Khodnapur, and M. S. Biradar (2018) Primary concept of nickel toxicity — an overview. J. Basic Clin. Physiol. Pharmacol. Google Scholar
  27. 27.
    Bertin, G. and D. Averbeck (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88: 1549–1559.CrossRefGoogle Scholar
  28. 28.
    Bae, W., A. Mulchandani, and W. Chen (2002) Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. J. Inorg. Biochem. 88: 223–227.CrossRefGoogle Scholar
  29. 29.
    Wei, Q., H. Zhang, D. Guo, and S. Ma (2016) Cell surface display of four types of Solanum nigrum metallothionein on Saccharomyces cerevisiae for biosorption of cadmium. J. Microbiol. Biotechnol. 28: 846–853.CrossRefGoogle Scholar
  30. 30.
    Kuroda, K. and M. Ueda (2006) Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl. Microbiol. Biotechnol. 70: 458–463.CrossRefGoogle Scholar
  31. 31.
    Biondo, R., F. A. Da Silva, E. J. Vicente, J. E. Souza Sarkis, and A. C. Schenberg (2012) Synthetic phytochelatin surface display in Cupriavidus metallidurans CH34 for enhanced metals bioremediation. Environ. Sci. Technol. 46: 8325–8332.CrossRefGoogle Scholar
  32. 32.
    Saffar, B., B. Yakhchali, and M. Arbabi (2007) Development of a bacterial surface display of hexahistidine peptide using CS3 pili for bioaccumulation of heavy metals. Curr. Microbiol. 55: 273–277.CrossRefGoogle Scholar
  33. 33.
    Xu, Z. and S. Y. Lee (1999) Display of polyhistidine peptides on the Escherichia coli cell surface by using outer membrane protein C as an anchoring motif. Appl. Environ. Microbiol. 65: 5142–5147.Google Scholar
  34. 34.
    Zheng, L. B. and R. Losick (1990) Cascade regulation of spore coat gene expression in Bacillus subtilis. J. Mol. Biol. 212: 645–660.CrossRefGoogle Scholar
  35. 35.
    Driks, A., S. Roels, B. Beall, C. Moran, and R. Losick (1994) Subcellular localization of proteins involved in the assembly of the spore coat of Bacillus subtilis. Genes Dev. 8: 234–244.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Wooil Kim
    • 1
  • Daeun Kim
    • 1
  • Sanggeun Back
    • 1
    • 2
  • Yong-suk Lee
    • 3
  • Afrouzossadat Hosseini Abari
    • 4
    Email author
  • Junehyung Kim
    • 1
    • 2
    Email author
  1. 1.Department of Chemical EngineeringDong-A UniversityBusanKorea
  2. 2.Center for Sliver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate SchoolDong-A UniversityBusanKorea
  3. 3.Department of BiotechnologyDong-A UniversityBusanKorea
  4. 4.Department of Biology, Faculty of ScienceUniversity of IsfahanIsfahanIran

Personalised recommendations