Biotechnology and Bioprocess Engineering

, Volume 23, Issue 6, pp 617–626 | Cite as

Theobromine, a Methylxanthine in Cocoa Bean, Stimulates Thermogenesis by Inducing White Fat Browning and Activating Brown Adipocytes

  • Myeong Hwan JangEmail author
  • Nam Hyeon Kang
  • Sulagna Mukherjee
  • Jong Won Yun
Research Paper


Natural medicinal compounds to treat obesity have recently attracted a great deal of attention because of the serious side effects of synthetic anti-obesity drugs. Recent advances have been made to identify natural products showing thermogenic activity, which is responsible for energy expenditure in brown or brown-like (beige) adipocytes. Here, we explored the thermogenic effects of theobromine, one of the most abundant methylxanthines in cocoa, on 3T3-L1 white adipocytes and HIB1B brown adipocytes. Theobromine markedly increased the expression levels of brown-fat signature proteins (PGC-1α, PRDM16, and UCP1) and beige-specific genes (Cd137, Cidea, Cited1, Tbx1, and Tmen26) in 3T3-L1 white adipocytes and remarkably elevated the expression levels of brown fatspecific genes (Cidea, Lhx8, Ppargc1, Prdm16, Ucp1, and Zic1) in HIB1B brown adipocytes. Theobromine also reduced the expression of the key adipogenic transcription factors, C/EBPα and PPARγ, in white adipocytes, while enhancing their expression in HIB1B cells. In addition, theobromine regulated lipolytic events and fat oxidation by upregulating the expression of pACC, ATGL, pHSL, ACOX, and CPT1. Additional mechanistic study revealed that theobromine activates β3-AR and AMPK. In summary, our results provide evidence for the first time indicating that theobromine has a potential beneficial effect on browning of white adipocytes and improves lipid catabolic metabolism in both cultured white and brown adipocytes via β-adrenergic signaling and AMPK activation. Consumption of theobromine may be a feasible way to activate thermogenesis and improve systematic lipid metabolism to protect against obesity and other metabolic disorders.


adipocytes anti-obesity fat browning thermogenesis theobromine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    González–Muniesa, P., M. A. Mártinez–González, F. B. Hu, J. P. Després, Y. Matsuzawa, R. J. F Loos, J. A. Moreno, G. A. Bray, and J. A. Martinez (2017) Obesity. Nat. Rev. Dis. Primers. 3: 17034.CrossRefGoogle Scholar
  2. 2.
    Vermaak, I., A. M. Viljoen, and J. H. Hamman (2011) Natural products in anti–obesity therapy. Nat. Prod. Rep. 28: 1493–1533.CrossRefGoogle Scholar
  3. 3.
    Fu, C., Y. Jiang, J. Guo, and Z. Su (2016) Natural Products with Anti–obesity Effects and Different Mechanisms of Action. J. Agric. Food Chem. 64: 9571–9585.CrossRefGoogle Scholar
  4. 4.
    Bonet, M. L., P. Oliver, and A. Palou (2013) Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim. Biophys. Acta 1831: 969–985.CrossRefGoogle Scholar
  5. 5.
    Wankhade, U. D., M. Shen, H. Yadav, and K. M. Thakali (2016) Novel browning agents, mechanisms, and therapeutic potentials of brown adipose tissue. Biomed. Res. Int. 2365609.Google Scholar
  6. 6.
    van Marken Lichtenbelt, W. D., J. W. Vanhommerig, N. M. Smulders, J. M. Drossaerts, G. J. Kemerink, N. D. Bouvy, P. Schrauwen, and G. J. Teule (2009) Cold–activated brown adipose tissue in healthy men. New Eng. J. Med. 360: 1500–1508.CrossRefGoogle Scholar
  7. 7.
    Wang, W. and P. Seale (2016) Control of brown and beige fat development. Nat. Rev. Mol. Cell Biol. 17: 691–702.CrossRefGoogle Scholar
  8. 8.
    Azhar, Y., A. Parmar, C. N. Miller, J. S. Samuels, and S. Rayalam (2016) Phytochemicals as novel agents for the induction of browning in white adipose tissue. Nutr. Metab. (Lond) 13: 89.CrossRefGoogle Scholar
  9. 9.
    Mopuri, R. and S. Islam (2017) Medicinal plants and phytochemicals with anti–obesogenic potentials: A review. Biomed. Pharmacother. 89: 1442–1452.CrossRefGoogle Scholar
  10. 10.
    Carragetaa, D. F., T. R. Diasa, M. G. Alvesb, P. F. Oliveirab, M. P. Monteirod, and B. M. Silva (2018) Anti–obesity potential of natural methylxanthines. J. Funct Food 43: 84–94.CrossRefGoogle Scholar
  11. 11.
    Hurst, W. J., S. M. Jr Tarka, T. G. Powis, F. Jr Valdez, and T. R. Hester (2002) Cacao usage by the earliest Maya civilization. Nature 418: 289–290.CrossRefGoogle Scholar
  12. 12.
    Arnaud, M. J. (2011) Pharmacokinetics and metabolism of natural methylxanthines in animal and man. Handb. Exp. Pharmacol. 200: 33–91.CrossRefGoogle Scholar
  13. 13.
    Kim, J., J. Kim, J. Shim, C. Y. Lee, K. W. Lee, and H. J. Lee (2014) Cocoa phytochemicals: recent advances in molecular mechanisms on health. Crit. Rev. Food Sci. Nutr. 54: 1458–1472.CrossRefGoogle Scholar
  14. 14.
    Monteiro, J., M. G. Alves, P. F. Oliveira, and B. M. Silva (2018) Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Crit. Rev. Food Sci. Nutr. 6: 1–29.CrossRefGoogle Scholar
  15. 15.
    Yang, X. R., E. Wat, Y. P. Wang, C. H. Ko, C. M. Koon, W. S. Siu, S. Gao, D. W. Cheung, C. B. Lau, C. X. Ye, and P. C. Leung (2013) Effect of dietary cocoa tea (Camellia ptilophylla) supplementation on high–fat diet–Induced obesity, hepatic steatosis, and hyperlipidemia in mice. Evid. Based Complement Alternat. Med. 2013: 783860.Google Scholar
  16. 16.
    Li, K. K., L. C. Liu, H. T. Shiu, H. L. Wong, W. S. Siu, C. Zhang, X. Q. Han, C. X. Ye, P. C. Leung, and C. H. Ko (2016) Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3–L1 preadipocytes. Sci. Rep. 6: 20172.CrossRefGoogle Scholar
  17. 17.
    Eteng, M., H. Ibekwe, U. Umoh, P. Ebong, I. Umoh, and E. Eyong (2006) Theobromine rich cocoa powder induces weight loss and changes in lipid profile of obese Wistar rats. Discov. Innov. 18: 191–196.Google Scholar
  18. 18.
    Martínez–Pinilla, E., A. Oñatibia–Astibia, and R. Franco (2015) The relevance of theobromine for the beneficial effects of cocoa consumption. Front Pharmacol. 6: 30.Google Scholar
  19. 19.
    Papadimitriou, A., K. C. Silva, E. B. Peixoto, C. M. Borges, J. M. Lopes de Faria, and J. B. Lopes de Faria (2015) Theobromine increases NAD+/Sirt–1 activity and protects the kidney under diabetic conditions. Am. J. Physiol. Renal. Physiol. 308: F209–25.CrossRefGoogle Scholar
  20. 20.
    Sugimoto, N., S. Miwa, Y. Hitomi, H. Nakamura, H. Tsuchiya, and A. Yachie (2014) Theobromine, the primary methylxanthine found in Theobroma cacao, prevents malignant glioblastoma proliferation by negatively regulating phosphodiesterase–4, extracellular signal–regulated kinase, Akt/mammalian target of rapamycin kinase, and nuclear factor–kappa B. Nutr. Cancer 66: 419–423.CrossRefGoogle Scholar
  21. 21.
    Mitchell, E. S., M. Slettenaar, N. vd Meer, C. Transler, L. Jans, F. Quadt, and M. Berry (2011) Differential contributions of theobromine and caffeine on mood, psychomotor performance and blood pressure. Physiol. Behav. 104: 816–822.CrossRefGoogle Scholar
  22. 22.
    Jang, Y. J., H. J. Koo, E. H. Sohn, S. C. Kang, D. K. Rhee, and S. Pyo (2015) Theobromine inhibits differentiation of 3T3–L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways. Food Funct. 6: 2365–2374.CrossRefGoogle Scholar
  23. 23.
    Mitani, T., S. Watanabe, Y. Yoshioka, S. Katayama, S. Nakamura, and H. Ashida (2017) Theobromine suppreßses adipogenesis through enhancement of CCAAT–enhancer–binding protein ß degradation by adenosine receptor A1. Biochim. Biophys. Acta 64: 2438–2448.CrossRefGoogle Scholar
  24. 24.
    Jacobs, D. M., L. Smolders, Y. Lin, N. de Roo, E. A. Trautwein, J. van Duynhoven, R. P. Mensink, J. Plat, and V. V. Mihaleva (2017) Effect of theobromine consumption on serum lipoprotein profiles in apparently healthy humans with low HDL–cholesterol concentrations. Front Mol. Biosci. 4: 59.CrossRefGoogle Scholar
  25. 25.
    Martín–Peláez, S., M. Camps–Bossacoma, M. Massot–Cladera, M. Rigo–Adrover, A. Franch, F. J. Pérez–Cano, and M. Castell (2017). Effect of cocoa’s theobromine on intestinal microbiota of rats. Mol. Nutr. Food Res. 61: 1700238.CrossRefGoogle Scholar
  26. 26.
    Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55–63.CrossRefGoogle Scholar
  27. 27.
    Mursu, J., S. Voutilainen, T. Nurmi, T. H. Rissanen, J. K. Virtanen, J. Kaikkonen, K. Nyyssönen, and J. T. Salonen (2004) Dark chocolate consumption increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy humans. Free Radic. Biol. Med. 37: 1351–1359.CrossRefGoogle Scholar
  28. 28.
    Khan, N., M. Monagas, C. Andres–Lacueva, R. Casas, M. Urpí–Sardà, R. M. Lamuela–Raventós, and R. Estruch (2012) Regular consumption of cocoa powder with milk increases HDL cholesterol and reduces oxidized LDL levels in subjects at highrisk of cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 22: 1046–1053.CrossRefGoogle Scholar
  29. 29.
    Neufinger, N., Y. E. Zebregs, E. A. Schuring, and E. A. Trautwein (2013) Effect of cocoa and theobromine consumption on serum HDL–cholesterol concentrations: a randomized controlled trial. Am. J. Clin. Nutr. 97: 1201–1209.CrossRefGoogle Scholar
  30. 30.
    Smolders, L., R. P. Mensink, M. V. Boekschoten, R. J. J. de Ridder, and J. Plat (2018) Theobromine does not affect postprandial lipid metabolism and duodenal gene expression, but has unfavorable effects on postprandial glucose and insulin responses in humans. Clin. Nutr. 37: 719–727.CrossRefGoogle Scholar
  31. 31.
    Dulloo, A. G., J. Seydoux, L. Girardier, P. Chantre, and J. Vandermander (2000) Green tea and thermogenesis: interactions between catechin–polyphenols, caffeine and sympathetic activity. Int. J. Obes. Relat. Metab. Disord. 24: 252–258.CrossRefGoogle Scholar
  32. 32.
    Acheson, K. J., G. Gremaud, I. Meirim, F. Montigon, Y. Krebs, L. B. Fay, L. J. Gay, P. Schneiter, C. Schindler, and L. Tappy (2004) Metabolic effects of caffeine in humans: lipid oxidation or futile cycling? Am. J. Clin. Nutr. 79: 40–46.CrossRefGoogle Scholar
  33. 33.
    Lopez–Garcia, E., R. M. van Dam, S. Rajpathak, W. C. Willett, J. E. Manson, and F. B. Hu (2006) Changes in caffeine intake and long–term weight change in men and women. Am. J. Clin. Nutr. 83: 674–680.CrossRefGoogle Scholar
  34. 34.
    Daly, J. W (2007) Caffeine analogs: biomedical impact. Cell Mol. Life Sci. 64: 2153–2169.CrossRefGoogle Scholar
  35. 35.
    Wu, C. and S. Rajagopalan (2016) Phosphodiesterase–4 inhibition as a therapeutic strategy for metabolic disorders. Obesity Rev. 17: 429–441.CrossRefGoogle Scholar
  36. 36.
    Rasouli, M. and M. Zahraie (2006) Suppression of VLDL associated triacylglycerol secretion by both a–and ß–adrenoceptor agonists in isolated rat hepatocytes. Eur. J. Pharmacol. 545: 109–114.CrossRefGoogle Scholar
  37. 37.
    Green, R. D. and L. R. Stanberry (1977) Elevation of cyclic amp in C–1300 murine neuroblastoma by adenosine and related compounds and the antagonism of this response by methylxanthines. Biochem. Pharmacol. 26: 37–43.CrossRefGoogle Scholar
  38. 38.
    Morimoto, C., K. Kameda, T. Tsujita, and H. Okuda (2001) Relationships between lipolysis induced by various lipolytic agents and hormone–sensitive lipase in rat fat cells. J. Lipid. Res. 42: 120–127.Google Scholar
  39. 39.
    Wu, L., L. Zhang, B. Li, H. Jiang, Y. Duan, Z. Xie, L. Shuai, J. Li, and J. Li (2018) AMP–activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Front Physiol. 9: 122.CrossRefGoogle Scholar
  40. 40.
    Koh, H. J., M. F. Hirshman, H. He, Y. Li, Y. Manabe, J. A. Balschi, and L. J. Goodyear (2007) Adrenaline is a critical mediator of acute exercise–induced AMP–activated protein kinase activation in adipocytes. Biochem. J. 403: 473–481.CrossRefGoogle Scholar
  41. 41.
    Seino, S., H. Takahashi, W. Fujimoto, and T. Shibasaki (2009) Roles of cAMP signalling in insulin granule exocytosis. Diabetes Obes. Metab. 11: 180–188.CrossRefGoogle Scholar
  42. 42.
    Nakabayashi, H., T. Hashimoto, H. Ashida, S. Nishiumi, and K. Kanazawa (2008) Inhibitory effects of caffeine and its metabolites on intracellular lipid accumulation in murine 3T3–L1 adipocytes. Biofactors 34: 293–302.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Myeong Hwan Jang
    • 1
    Email author
  • Nam Hyeon Kang
    • 1
  • Sulagna Mukherjee
    • 1
  • Jong Won Yun
    • 1
  1. 1.Department of BiotechnologyDaegu UniversityGyeongsanKorea

Personalised recommendations