Biotechnology and Bioprocess Engineering

, Volume 23, Issue 6, pp 686–692 | Cite as

Improvement in the Reproducibility of a Paper-based Analytical Device (PAD) Using Stable Covalent Binding between Proteins and Cellulose Paper

  • Woogyeong Hong
  • Seong-Geun Jeong
  • Gyurak Shim
  • Dae Young Kim
  • Seung Pil Pack
  • Chang-Soo LeeEmail author
Research Paper


Paper-based analytical devices (PADs) have been widely used in many fields because they are affordable and portable. For reproducible quantitative analysis, it is crucial to strongly immobilize proteins on PADs. Conventional techniques for immobilizing proteins on PADs are based on physical adsorption, but proteins can be easily removed by weak physical forces. Therefore, it is difficult to ensure the reproducibility of the analytical results of PADs using physical adsorption. To overcome this limitation, in this study, we showed a method of covalent binding of proteins to cellulose paper. This method consists of three steps, which include periodate oxidation of paper, the formation of a Schiff base, and reductive amination. We identified aldehyde and imine groups formed on paper using FT-IR analysis. This covalent bonding approach enhanced the binding force and binding capacity of proteins. We confirmed the activity of an immobilized antibody through a sandwich immunoassay. We expect that this immobilization method will contribute to the commercialization of PADs with high reproducibility and sensitivity.


cellulose immobilization periodate oxidation covalent binding protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weigl, B., G. Domingo, P. Labarre, and J. Gerlach (2008) Towards non–and minimally instrumented, microfluidics–based diagnostic devices. Lab on a Chip. 8: 1999–2014.CrossRefGoogle Scholar
  2. 2.
    Martinez, A. W., S. T. Phillips, G. M. Whitesides, and E. Carrilho (2010) Diagnostics for the developing world: microfluidic paper–based analytical devices. Analytical Chemistry 82: 3–10.CrossRefGoogle Scholar
  3. 3.
    Mabey, D., R. W. Peeling, A. Ustianowski, and M. D. Perkins (2004) Diagnostics for the developing world. Nature Reviews Microbiology 2: 231–240.CrossRefGoogle Scholar
  4. 4.
    Mao, X. and T. J. Huang (2012) Microfluidic diagnostics for the developing world. Lab on a Chip. 12: 1412–1416.CrossRefGoogle Scholar
  5. 5.
    Yang, J. M., K. R. Kim, and C. S. Kim (2018) Biosensor for Rapid and Sensitive Detection of Influenza Virus. Biotechnol. Bioproc. E. 23: 371–382.CrossRefGoogle Scholar
  6. 6.
    Zhao, Z., J. Zhang, M. L. Xu, Z. P. Liu, H. Wang, M. Liu, Y. Y. Yu, L. Sun, H. Zhang, and H. Y. Wu (2016) A rapidly new–typed detection of norovirus based on F0F1–ATPase molecular motor biosensor. Biotechnol. Bioproc. E. 21: 128–133.CrossRefGoogle Scholar
  7. 7.
    Sobhan, A., J. H. Oh, M. K. Park, S. W. Kim, C. Park, and J. Lee (2018) Single walled carbon nanotube based biosensor for detection of peanut allergy–inducing protein ara h1. Korean Journal of Chemical Engineering 35: 172–178.CrossRefGoogle Scholar
  8. 8.
    von Lode, P. (2005) Point–of–care immunotesting: approaching the analytical performance of central laboratory methods. Clinical Biochemistry 38: 591–606.CrossRefGoogle Scholar
  9. 9.
    Peeling, R. W., K. K. Holmes, D. Mabey, and A. Ronald (2006) Rapid tests for sexually transmitted infections (STIs): the way forward. Sexually Transmitted Infections 82 Suppl 5: v1–6.Google Scholar
  10. 10.
    Yetisen, A. K., M. S. Akram, and C. R. Lowe (2013) Paper–based microfluidic point–of–care diagnostic devices. Lab on a Chip. 13: 2210–2251.CrossRefGoogle Scholar
  11. 11.
    Sackmann, E. K., A. L. Fulton, and D. J. Beebe (2014) The present and future role of microfluidics in biomedical research. Nature 507: 181–189.CrossRefGoogle Scholar
  12. 12.
    Cate, D. M., J. A. Adkins, J. Mettakoonpitak, and C. S. Henry (2015) Recent developments in paper–based microfluidic devices. Analytical Chemistry 87: 19–41.CrossRefGoogle Scholar
  13. 13.
    Han, S. I., K. S. Hwang, R. Kwak, and J. H. Lee (2016) Microfluidic paper–based biomolecule preconcentrator based on ion concentration polarization. Lab on a Chip. 16: 2219–2227.CrossRefGoogle Scholar
  14. 14.
    Yu, L. and Z. Z. Shi (2015) Microfluidic paper–based analytical devices fabricated by low–cost photolithography and embossing of Parafilm(R). Lab on a Chip. 15: 1642–1645.CrossRefGoogle Scholar
  15. 15.
    Lee, C. H., L. Tian, and S. Singamaneni (2010) Paper–based SERS swab for rapid trace detection on real–world surfaces. ACS Applied Materials & Interfaces 2: 3429–3435.CrossRefGoogle Scholar
  16. 16.
    Dungchai, W., O. Chailapakul, and C. S. Henry (2009) Electrochemical detection for paper–based microfluidics. Analytical Chemistry 81: 5821–5826.CrossRefGoogle Scholar
  17. 17.
    Lessing, J., A. C. Glavan, S. B. Walker, C. Keplinger, J. A. Lewis, and G. M. Whitesides (2014) Inkjet printing of conductive inks with high lateral resolution on omniphobic “R(F) paper” for paper–based electronics and MEMS. Advanced Materials 26: 4677–4682.CrossRefGoogle Scholar
  18. 18.
    Carrilho, E., A. W. Martinez, and G. M. Whitesides (2009) Understanding wax printing: a simple micropatterning process for paper–based microfluidics. Analytical Chemistry. 81: 7091–7095.CrossRefGoogle Scholar
  19. 19.
    Noor, M. O., A. Shahmuradyan, and U. J. Krull (2013) Paperbased solid–phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer. Analytical Chemistry 85: 1860–1867.CrossRefGoogle Scholar
  20. 20.
    Parolo, C. and A. Merkoci (2013) Paper–based nanobiosensors for diagnostics. Chemical Society Reviews 42: 450–457.CrossRefGoogle Scholar
  21. 21.
    Jeong, S. G., J. Kim, J. O. Nam, Y. S. Song, and C. S. Lee (2013) Paper–based analytical device for quantitative urinalysis. International Neurourology Journal 17: 155–161.CrossRefGoogle Scholar
  22. 22.
    Taudte, R. V., A. Beavis, L. Wilson–Wilde, C. Roux, P. Doble, and L. Blanes (2013) A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured waxprinted muPADs. Lab on a Chip. 13: 4164–4172.CrossRefGoogle Scholar
  23. 23.
    Jeong, S. G., J. Kim, S. H. Jin, K. S. Park, and C. S. Lee (2016) Flow control in paper–based microfluidic device for automatic multistep assays: A focused minireview. Korean Journal of Chemical Engineering 33: 2761–2770.CrossRefGoogle Scholar
  24. 24.
    Yang, Y., E. Noviana, M. P. Nguyen, B. J. Geiss, D. S. Dandy, and C. S. Henry (2017) Paper–based microfluidic devices: Emerging themes and applications. Analytical Chemistry 89: 71–91.CrossRefGoogle Scholar
  25. 25.
    Meredith, N. A., C. Quinn, D. M. Cate, T. H. Reilly, 3rd, J. Volckens, and C. S. Henry (2016) Paper–based analytical devices for environmental analysis. The Analyst 141: 1874–1887.CrossRefGoogle Scholar
  26. 26.
    Yamada, K., T. G. Henares, K. Suzuki, and D. Citterio (2015) Paper–based inkjet–printed microfluidic analytical devices. Angewandte Chemie 54: 5294–5310.CrossRefGoogle Scholar
  27. 27.
    Credou, J., H. Volland, J. Dano, and T. Berthelot (2013) A onestep and biocompatible cellulose functionalization for covalent antibody immobilization on immunoassay membranes. Journal of Materials Chemistry B. 1: 3277–3286.CrossRefGoogle Scholar
  28. 28.
    Jarujamrus, P., J. Tian, X. Li, A. Siripinyanond, J. Shiowatana, and W. Shen (2012) Mechanisms of red blood cells agglutination in antibody–treated paper. The Analyst 137: 2205–2210.CrossRefGoogle Scholar
  29. 29.
    Jeong, S. G., S. H. Lee, C. H. Choi, J. Kim, and C. S. Lee (2015) Toward instrument–free digital measurements: a three–dimensional microfluidic device fabricated in a single sheet of paper by doublesided printing and lamination. Lab on a Chip. 15: 1188–1194.CrossRefGoogle Scholar
  30. 30.
    Cheng, C. M., A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides (2010) Paperbased ELISA. Angewandte Chemie 49: 4771–4774.CrossRefGoogle Scholar
  31. 31.
    Kim, U. J., S. Kuga, M. Wada, T. Okano, and T. Kondo (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1: 488–492.CrossRefGoogle Scholar
  32. 32.
    Maekawa, E., and T. Koshijima (1984) Properties of 2,3–dicarboxy cellulose combined with various metallic ions. Journal of Applied Polymer Science 29: 2289–2297.CrossRefGoogle Scholar
  33. 33.
    Bruneel, D. and E. Schacht (1993) Chemical modification of pullulan: 1. Periodate oxidation. Polymer 34: 2628–2632.Google Scholar
  34. 34.
    Alonso, D., M. Gimeno, J. D. Sepulveda–Sanchez, and K. Shirai (2010) Chitosan–based microcapsules containing grapefruit seed extract grafted onto cellulose fibers by a non–toxic procedure. Carbohydrate Research 345: 854–859.CrossRefGoogle Scholar
  35. 35.
    Abdel–Magid, A. F., K. G. Carson, B. D. Harris, C. A. Maryanoff, and R. D. Shah (1996) Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures(1). The Journal of Organic Chemistry 61: 3849–3862.Google Scholar
  36. 36.
    Cordes, E. H. and W. P. Jencks (1962) On the mechanism of schiff base formation and hydrolysis. Journal of the American Chemical Society 84: 832–837.CrossRefGoogle Scholar
  37. 37.
    Lindh, J., D. O. Carlsson, M. Stromme, and A. Mihranyan (2014) Convenient one–pot formation of 2,3–dialdehyde cellulose beads via periodate oxidation of cellulose in water. Biomacromolecules 15: 1928–1932.CrossRefGoogle Scholar
  38. 38.
    Potthast, A., M. Kostic, S. Schiehser, P. Kosma, and T. Rosenau (2007) Studies on oxidative modifications of cellulose in the periodate system: Molecular weight distribution and carbonyl group profiles. Holzforschung 61: 662–667.CrossRefGoogle Scholar
  39. 39.
    Wang, S., L. Ge, X. Song, M. Yan, S. Ge, J. Yu, and F. Zeng (2012) Simple and covalent fabrication of a paper device and its application in sensitive chemiluminescence immunoassay. The Analyst 137: 3821–3827.CrossRefGoogle Scholar
  40. 40.
    Josephy, P. D. (1985) Oxidative activation of benzidine and its derivatives by peroxidases. Environmental Health Perspectives 64: 171–178.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Woogyeong Hong
    • 1
  • Seong-Geun Jeong
    • 1
  • Gyurak Shim
    • 1
  • Dae Young Kim
    • 2
  • Seung Pil Pack
    • 3
  • Chang-Soo Lee
    • 1
    Email author
  1. 1.Department of Chemical Engineering and Applied ChemistryChungnam National UniversitySeoulKorea
  2. 2.New Drug Development CenterOsong Medical Innovation FoundationSeoulKorea
  3. 3.Department of Biotechnology and BioinformaticsKorea UniversitySeoulKorea

Personalised recommendations