Advertisement

Biotechnology and Bioprocess Engineering

, Volume 23, Issue 6, pp 726–732 | Cite as

Production of Lipid Containing High Levels of Docosahexaenoic Acid by Cultivation of Aurantiochytrium sp. KRS101 Using Jerusalem Artichoke Extract

  • Jung-Hyun Ju
  • Baek-Rock Oh
  • Seung-Kyu Ryu
  • Sun-Yeon Heo
  • Su-Yeon Kim
  • Won-Kyung Hong
  • Chul Ho KimEmail author
  • Jeong-Woo SeoEmail author
Research Paper
  • 5 Downloads

Abstract

In the present study, we evaluated extract of Jerusalem artichoke tubers (JAT) as a substrate for the production of lipid containing high levels of docosahexaenoic acid (DHA) by cultivated Aurantiochytrium sp. KRS101, an oleaginous protist. The optimal conditions for cultivation determined using response surface methods were as follows: pH, 5.9; enzyme loading, 282.6; and temperature, 27.7°C. The maximal levels of lipid (16.4 g/L) and productivity (3.6 g/L/d) were obtained during fed-batch fermentation, which achieved a DHA yield of 7.9 g/L (>48% of total fatty acids by weight). Moreover, JAT was more economical, reducing costs of expensive yeast extract as a nitrogen source by about 40%. These results suggest that JAT may be further explored as a low-cost feedstock for lipid production using microalgae strains.

Keywords

oleaginous Aurantiochytrium lipid docosahexaenoic acid Jerusalem artichoke tubers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simopoulos, A. P. (1999) Essential fatty acids in health and chronic disease. Am. J. Clin. Nut. 70: 560S–509S.CrossRefGoogle Scholar
  2. 2.
    Innis, S. M. (2007) Fatty acids and early human development. Early Hum. Dev. 83: 761–766.CrossRefGoogle Scholar
  3. 3.
    Helwani, Z., J.M. Othman, N. Aziz, M. J. N. Fernando, and J. Kim (2009) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Furl. Proc. Technol. 90: 1193–1206.CrossRefGoogle Scholar
  4. 4.
    Kim, K., J. E. Kim, B. G. Ryu, S. Park, Y. E. Choi, and J. W. Yang (2013) A novel fed–batch process based on the biology of Aurantiochytrium sp. KRS101 for the production of biodiesel and docosahexaenoic acid. Bioresour. Technol. 135: 269–274.Google Scholar
  5. 5.
    Barclay, W. R., K. M. Meager, and J. R. Abril (1994) Heterotrophic production of long–chain omega–3–fatty–acids utilizing algae and algae–like microorganisms. J. Appl. Phycol. 6: 123–129.CrossRefGoogle Scholar
  6. 6.
    Amiri–Jami, M., G. Lapointe, and M. W. Griffiths (2014) Engineering of EPA/DHA omega–3 fatty acid production by Lactococcus lactis subsp. Cremoris MG1363. Appl. Microbiol. Biotechnol. 98: 3071–3080.CrossRefGoogle Scholar
  7. 7.
    Ruiz–Lopez, N., O. Sayanova, J. A. Napier, and R. P. Haslam (2012) Metabolic engineering of the omega–3 long chin polyunsaturated fatty acid biosynthetic pathway into transgenic plants. J. Exp. Bot. 63: 2397–2410.CrossRefGoogle Scholar
  8. 8.
    Hong, W. K., A. N. Yu, S. Y. Heo, B. R. Oh, C. H. Kim, J. H. Shon, J. W. Yang, A. Kondo, and J. W. Seo (2013) Production of lipids containing high levels of docosahexaenoic acid from empty palm fruit bunches by Aurantiochytrium sp. KRS101. Bioprocess Biosys. Eng. 36: 959–963.CrossRefGoogle Scholar
  9. 9.
    Ratledge, C. (2004) Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 86: 807–815.CrossRefGoogle Scholar
  10. 10.
    Chi, Z., B. Hu, Y. Liu, C. Frear, Z. Wen, and S. Chen (2007) Production of omega–3 polyunsaturated fatty acids from cull potato using an algae culture process. Appl. Biochem. Biotechnol. 137–140: 805–815.Google Scholar
  11. 11.
    Kim, S. H., J. M. Park, and C. H. Kim (2013) Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555. Appl. Biochem. Biotechnol. 169: 1531–1545.CrossRefGoogle Scholar
  12. 12.
    Liang, Y., N. Sarkany, Y. Cui, J. Yesuf, J. Trushenski, and J. W. Blackburn (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacimum SR21. Bioresour. Technol. 101: 3623–3627.CrossRefGoogle Scholar
  13. 13.
    Ryu, B. G., K. Kim, J. Kim, J. I. Han, and J. W. Yang (2013) Use of organic waste from the brewery industry for high–density cultivation of the docosahexaenoic acid–rich microalga, Aurantiochytrium sp. KRS101. Bioresour. Technol. 129: 351–359.CrossRefGoogle Scholar
  14. 14.
    Chang, G., N. Gao, G. Tian, Q. Wu, M. Chang, and X. Wang (2013) Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour. Technol. 142: 400–406.Google Scholar
  15. 15.
    Scott, S. D., R. R. Armenta, K. T. Berryman, and A. W. Norman (2011) Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Enz. Microb. Technol. 48: 267–272.CrossRefGoogle Scholar
  16. 16.
    Swanton, C. J., P. B. Cavers, D. R. Clements, and M. J. Moore (1992) The biology of Canadian weeds, 101. Helianthus tuberous L. Can. J. Plant Sci. 72: 1367–1382.CrossRefGoogle Scholar
  17. 17.
    Szambelan, K., J. Nowak, and Z. Czarnecki (2004). Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnol. Let. 26: 845–848.CrossRefGoogle Scholar
  18. 18.
    Bekers, M., M. Grube, D. Upite, E. Kaminska, R. Linde, R. Scherbaka, and A. Danilevics (2007) Carbohydrates in Jerusalem artichoke powder suspension. Nutri. Food Sci. 37: 42–49.CrossRefGoogle Scholar
  19. 19.
    Zhao, C. H., W. Cui, X. Y. Liu, Z. M. Chi, and C. Madzak (2010) Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin–containing materials. Metab. Eng. 12: 510–517.CrossRefGoogle Scholar
  20. 20.
    Zhao, X., S. Wu, C. Hu, Q. Wang, Y. Hua, and Z. K. Zhao (2010) Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. J. Ind. Microbiol. Biotechnol. 37: 581–585.CrossRefGoogle Scholar
  21. 21.
    Sung, M., Y. H. Seo, S. Han, and J. I. Han (2014) Biodiesel production from yeast Cryptococcus sp. using Jerusalem artichoke. Bioresour. Technol. 155: 77–83.CrossRefGoogle Scholar
  22. 22.
    Li, D., J. Y. Dai, and Z. L. Xiu (2010) A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2.3–butanediol by Klebsiella pneumoniae. Bioresour. Technol. 101: 8342–8347.CrossRefGoogle Scholar
  23. 23.
    Sun, L. H., X. D. Wang, J. Y. Dai, and Z. L. Xiu (2009) Microbial production of 2,3–butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 82: 847–852.CrossRefGoogle Scholar
  24. 24.
    Kaldy, M. S., A. Johnston, and D. B. Wilson (1980). Nutritive value of Indian bread–root, squaw–root, and Jerusalem artichoke. Econ. Bot. 34: 352–357.CrossRefGoogle Scholar
  25. 25.
    Kim, J. K., B. R. Oh, H. J. Shin, C. Y. Eom, and S. W. Kim (2008) Statistical optimization of enzymatic saccharification and ethanol fermentation using food waste. Process Biochem. 43: 1308–1312.CrossRefGoogle Scholar
  26. 26.
    Oh, B. R., J. W. Seo, S. Y. Heo, W. K. Hong, L. H. Luo, J. H. Son, D. H. Park, and C. H. Kim (2012) Fermentation strategies for 1,3–propanediol production from glycerol using a genetically engineered Klebsiella pneumoniae strain to eliminate by–product formation. Bioprocess Biosys. Eng. 35: 159–165.CrossRefGoogle Scholar
  27. 27.
    Burja, A. M., H. Radianingtyas, A. Windust, and C. J. Barrow (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega–3 production. Appl. Microbiol. Biotechnol. 72: 1161–1169.CrossRefGoogle Scholar
  28. 28.
    Park, J. M., B. R. Oh, I. Y. Kang, S. Y. Heo, J. W. Seo, S. M. Park, W. K. Hong, and C. H. Kim (2017) Enhancement of 2,3–butanediol production from Jerusalem artichoke tuber extract by a recombinant Bacillus sp. strain BRC1 with increased inulinase activity. Microbiol. Biotechnol. 44: 1107–1113.CrossRefGoogle Scholar
  29. 29.
    Paul, G. C., C. A. Kent, and C. R. Thomas (1992) Quantitative characterization of vacuolization in Penicillium chyrsogenum using automatic image analysis. Food Bioprod. Process. 70: 13–20.Google Scholar
  30. 30.
    Margaritis, A. and P. Bajpai (1982) Ethanol production from Jerusalem artichoke tubers (Helianthus tuberosus) using Kluyveromyces marxianus and Saccharomyces rosei. Biotechnol. Bioeng. 24: 941–953.CrossRefGoogle Scholar
  31. 31.
    Oh, B. R., S. M. Lee, S. Y. Heo, J. W. Seo, and C. H. Kim (2018) Efficient production of 1,3–propanediol from crude glycerol by repeated fed–batch fermentation strategy of lactate and 2,3–butanediol deficient mutant of Klebsiella penimoniae. Microb. Cell Fact. 17: 92–100.CrossRefGoogle Scholar
  32. 32.
    Wang, G. Y., Z. Chi, B. Song, Z. P. Wang, and Z. M. Chi (2012) High level lipid productin by a novel inulinase–producing yeast Pichia guilliermondii Pcla22. Bioresour. Technol. 124: 77–82.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jung-Hyun Ju
    • 1
  • Baek-Rock Oh
    • 1
  • Seung-Kyu Ryu
    • 1
  • Sun-Yeon Heo
    • 1
  • Su-Yeon Kim
    • 1
    • 2
  • Won-Kyung Hong
    • 3
  • Chul Ho Kim
    • 1
  • Jeong-Woo Seo
    • 1
  1. 1.Industrial Microbiology & Bioprocess Research CenterJeonbuk Branch InstituteKRIBB, JeongeupKorea
  2. 2.Biosystems and Bioengineering KRIBB SchoolUniversity of Science and Technology (UST)DaejeonKorea
  3. 3.Korea Zoonosis Research Institute (KoZRI)Chonbuk National UniversityIksanKorea

Personalised recommendations