Biotechnology and Bioprocess Engineering

, Volume 23, Issue 6, pp 679–685 | Cite as

Detergent-assisted Enhancement of the Translation Rate during Cell-free Synthesis of Peptides in an Escherichia coli Extract

  • Seo-Young Go
  • Kyung-Ho Lee
  • Dong-Myung KimEmail author
Research Paper


The open nature of cell-free synthesis allows customization of the reaction conditions for given target molecules using diverse biological and non-biological substances. This study demonstrates that non-ionic detergents can be used to enhance translation during the synthesis of peptides in a cell-free system derived from an Escherichia coli extract. The yield of the antimicrobial peptide Cecropin P1 was markedly increased in the presence of detergents. The stimulatory effect of detergents was not limited to the Cecropin P1 peptide, but the detergent also enhanced the translation of other antimicrobial peptides. Furthermore, the enhanced translation rate by detergents was maintained for extended periods by a continuous exchange cell-free synthesis reaction, leading to production of antimicrobial peptides with markedly improved yields.


cell-free translation translation rate antimicrobial peptides detergent continuous exchange cell-free synthesis system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12257_2018_418_MOESM1_ESM.pdf (545 kb)
Supplementary material, approximately 545 KB.


  1. 1.
    Albericio, F. (2004) Developments in peptide and amide synthesis. Curr. Opin. Chem. Biol. 8: 211–221.CrossRefGoogle Scholar
  2. 2.
    Park, J. C., D. H. Kim, C. S. Kim, and J. H. Seo (2018) R5 peptide–based biosilicification using methyltrimethoxysilane. Biotechnol. Bioprocess Eng. 23: 11–15.CrossRefGoogle Scholar
  3. 3.
    Munk, J. K., C. Ritz, F. P. Fliedner, N. Frimodt–Møller, and P. R. Hansen (2014) Novel method to identify the optimal antimicrobial peptide in a combination matrix, using anoplin as an example. Antimicrob. Agents Chemother. 58: 1063–1070.CrossRefGoogle Scholar
  4. 4.
    Feng, X., W. Xu, P. Qu, X. Li, L. Xing, D. Liu, J. Jiao, J. Wang, Z. Li, and C. Liu (2015) High–yield recombinant expression of the chicken antimicrobial peptide fowlicidin–2 in Escherichia coli. Biotechnol. Prog. 31: 369–374.CrossRefGoogle Scholar
  5. 5.
    Bray, B. L. (2003) Large–scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. Drug Discov. 2: 587–593.CrossRefGoogle Scholar
  6. 6.
    Martemyanov, K. A., V. A. Shirokov, O. V. Kurnasov, A. T. Gudkov, and A. S. Spirin (2001) Cell–free production of biologically active polypeptides: application to the synthesis of antibacterial peptide Cecropin. Protein Expr. Purif. 21: 456–461.CrossRefGoogle Scholar
  7. 7.
    Cui, H., M. J. Webber, and S. I. Stupp (2010) Self–assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94: 1–18.CrossRefGoogle Scholar
  8. 8.
    Loose, C. R., R. S. Langer, and G. N. Stephanopoulos (2007) Optimization of protein fusion partner length for maximizing in vitro translation of peptides. Biotechnol. Prog. 23: 444–451.CrossRefGoogle Scholar
  9. 9.
    Lee, K. H., Y. C. Kwon, S. J. Yoo, and D. M. Kim (2010) Ribosomal synthesis and in situ isolation of peptide molecules in a cell–free translation system. Protein Exp. Purif. 71: 16–20.CrossRefGoogle Scholar
  10. 10.
    Yin, G. and J. R. Swartz (2004) Enhancing multiple disulfide bonded protein folding in a cell–free system. Biotechnol. Bioeng. 86: 188–195.CrossRefGoogle Scholar
  11. 11.
    Lee, K. Y., K. H. Lee, J. W. Park, and D. M. Kim (2012) Flexible programming of cell–free protein synthesis using magnetic beadimmobilized plasmids. PLoS One 7: e34429.CrossRefGoogle Scholar
  12. 12.
    Klammt, C., D. Schwarz, K. Fendler, W. Haase, V. Dotsch, and F. Bernhard (2005) Evaluation of detergents for the soluble expression of alpha–helical and beta–barrel–type integral membrane proteins by a preparative scale individual cell–free expression system. FEBS J. 272: 6024–6038.CrossRefGoogle Scholar
  13. 13.
    Kim, T. W., J. W. Keum, I. S. Oh, C. Y. Choi, C. G. Park, and D. M. Kim (2006) Simple procedures for the construction of a robust and cost–effective cell–free protein synthesis system. J. Biotechnol. 126: 554–561.CrossRefGoogle Scholar
  14. 14.
    Sipos, D., M. Andersson, and A. Ehrenberg (1992) The structure of the mammalian antibacterial peptide cecropin–P1 in solution, determined by proton–NMR. Eur. J. Biochem. 209: 163–169.CrossRefGoogle Scholar
  15. 15.
    Richardson, S. M., S. J. Wheelan, R. M. Yarrington, and J. D. Boeke (2006) GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res. 16: 550–556.CrossRefGoogle Scholar
  16. 16.
    Ahn, J. H., K. H. Lee, J. W. Shim, E. Y. Lee, and D. M. Kim (2013) Streamlined cell–free protein synthesis from sequence information. Biotechnol. Bioproc. Eng. 18: 1101–1108.CrossRefGoogle Scholar
  17. 17.
    Moerman, L., S. Bosteels, W. Noppe, J. Willems, E. Clynen, L. Schoofs, K. Thevissen, J. Tytgat, J. V. Eldere, J. V. D. Walt, and F. Verdonck (2002) Antibacterial and antifungal properties of alpha–helical, cationic peptides in the venom of scorpions from southern Africa. Eur. J. Biochem. 19: 4799–4810.CrossRefGoogle Scholar
  18. 18.
    Reed, W. A., K. L. White, F. M. Enright, J. Holck, G. W. Jeffers, and J. M. Jaynes (1992) Enhanced in vitro growth of murine fibroblast cells and preimplantation embryos cultured in medium supplemented with an amphipathic peptide. Mol. Reprod. Dev. 31: 106–113.CrossRefGoogle Scholar
  19. 19.
    Son, J. M., J. H. Ahn, M. Y. Hwang, C. G. Park, C. Y. Choi, and D. M. Kim (2006) Enhancing the efficiency of cell–free protein synthesis through the polymerase–chain–reaction–based addition of a translation enhancer sequence and the in situ removal of the extra amino acid residues. Anal. Biochem. 351: 187–192.CrossRefGoogle Scholar
  20. 20.
    Schagger, H. (2006) Tricine–SDS–PAGE. Nat. Protoc. 1: 16–22.CrossRefGoogle Scholar
  21. 21.
    Kim, D. M. and C. Y. Choi (1996) A semicontinuous prokaryotic coupled transcription/ translation system using a dialysis membrane. Biotechnol. Prog. 12: 645–649.CrossRefGoogle Scholar
  22. 22.
    Hahn, G. H. and D. M. Kim (2006) Production of milligram quantities of recombinant proteins from PCR–amplified DNAs in a continuous–exchange cell–free protein synthesis system. Anal. Biochem. 355: 151–153.CrossRefGoogle Scholar
  23. 23.
    Ahn, J. H., H. S. Chu, T. W. Kim, I. S. Oh, C. Y. Choi, G. H. Hahn, C. G. Park, and D. M. Kim (2005) Cell–free synthesis of recombinant proteins from PCR–amplified genesat a comparable productivity to that of plasmid–based reactions. Biochem. Biophys. Res. Commun. 338: 1346–1352.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Applied ChemistryChungnam National UniversityDaejeonKorea

Personalised recommendations