Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 2, pp 282–287 | Cite as

Anti-cariogenic Characteristics of Rubusoside

  • Jeesoo Kim
  • Thi Thanh Hanh Nguyen
  • Juhui Jin
  • Iis Septiana
  • Gyu-Min Son
  • Gang-Hee Lee
  • You-Jin Jung
  • Dilshad Qureshi
  • Il Kyoon Mok
  • Kunal Pal
  • Soo-Yeon Yang
  • Seong-Bo Kim
  • Doman KimEmail author
Research Paper
  • 8 Downloads

Abstract

Streptococcus mutans plays an important role in the development of dental caries in humans by synthesizing adhesive insoluble glucans from sucrose by mutansucrase activity. To explore the anti-cariogenic characteristics of rubusoside (Ru), a natural sweetener component in Rubus suavissimus S. Lee (Rosaceae), we investigated the inhibitory effect of Ru against the activity of mutansucrase and the growth of Streptococcus mutans. Ru (50 mM) showed 97% inhibitory activity against 0.1 U/mL mutansucrase of S. mutans with 500 mM sucrose. It showed competitive inhibition with a Ki value of 1.1 ± 0.2 mM and IC50 of 2.3 mM. Its inhibition activity was due to hydrophobic and hydrogen bonding interactions based on molecular docking analysis. Ru inhibited the growth of S. mutans as a bacteriostatic agent, with MIC and MBC values of 6 mM and 8 mM, respectively. In addition, Ru showed synergistic anti-bacterial activity when it was combined with curcumin. Therefore, Ru is a natural anti-cariogenic agent with anti-mutansucrase activity and antimicrobial activity against S. mutans.

Keywords

Anti-cariogenicity mutansucrase natural sweetener rubusoside Streptococcus mutans 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was partially supported by the OTTOGI Corporation through the Research and Publication Project, by the Korean Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries (IPET) through the Agriculture, Food and Rural Affairs Research Center Support Program, funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA) (D. Kim, 710012-03-1-HD220), and by the Korean Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries (IPET) through the High Value-added Food Technology Development Program (116013032HD020) funded by the Ministry of Agriculture, Food, and Rural Affairs, Republic of Korea. The present study has been also conducted under Indo-Korea joint research program of Department of Science and Technology, Government of India (Sanction order # INT/Korea/P-37, June 15, 2017) and under the framework of International Cooperation Program managed (2016K1A3A1A19945059), and by the Basic Science Research Program (2018R1D1A1B07049569, T.T.H. Nguyen, 2018R1C1B6006348, I. Mok, 2018R1D1A1A09083366, D. Kim) managed by the NRF, Republic of Korea.

Supplementary material

12257_2018_408_MOESM1_ESM.pdf (780 kb)
Supplementary material, approximately 779 KB.

References

  1. 1.
    van Houte, J. (1994) Role of micro-organisms in caries etiology. J. Dent. Res. 73: 672–681.2.CrossRefGoogle Scholar
  2. 2.
    Schilling, K. M. and W. H. Bowen (1992) Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infect. Immun. 60: 284–295.Google Scholar
  3. 3.
    Lee, D., Y. Seo, M. S. Khan, J. Hwang, Y. Jo, J. Son, K. Lee, C. Park, S. Chavan, A. A. Gilad, and J. Choi (2018) Use of nanoscale materials for effective prevention and extermination of bacterial biofilms. Biotechnol. Boproc. Eng. 23: 1–10.CrossRefGoogle Scholar
  4. 4.
    Monchois, V., R. M. Willemot, and P. Monsan (1999) Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol. Rev. 23: 131–151.CrossRefGoogle Scholar
  5. 5.
    Tamesada, M., S. Kawabata, T. Fujiwara, and S. Hamada (2004) Synergistic effects of streptococcal glucosyltransferases on adhesive biofilm formation. J. Dent. Res. 83: 874–879.CrossRefGoogle Scholar
  6. 6.
    Ito, K., S. Ito, T. Shimamura, S. Weyand, Y. Kawarasaki, T. Misaka, K. Abe, T. Kobayashi, A. D. Cameron, and S. Iwata (2011) Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J. Mol. Biol. 408: 177–186.CrossRefGoogle Scholar
  7. 7.
    Xu, X., X. D. Zhou, and C. D. Wu (2011) The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrob. Agents Chemother. 55: 1229–1236.CrossRefGoogle Scholar
  8. 8.
    Zhang, M., T. Dai, and N. Feng (2017) A novel solubility-enhanced rubusoside-based micelles for increased cancer therapy. Nanoscale Res. Lett. 12: 274.CrossRefGoogle Scholar
  9. 9.
    Nguyen, T. T. H., S. J. Jung, H. K. Kang, Y. M. Kim, Y. H. Moon, M. Kim, and D. Kim (2014) Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide. Enzyme Microb. Tech. 64–65: 38–43.CrossRefGoogle Scholar
  10. 10.
    Chu, J., T. Zhang, and K. He (2016) Cariogenicity features of Streptococcus mutans in presence of rubusoside. BMC Oral Health. 16: 54.CrossRefGoogle Scholar
  11. 11.
    Lim, H. J., T. T. H. Nguyen, N. M. Kim, J. S. Park, T. S. Jang, and D. Kim (2017) Inhibitory effect of flavonoids against NS2B-NS3 protease of ZIKA virus and their structure activity relationship. Biotechnol. Lett. 39: 415–421.CrossRefGoogle Scholar
  12. 12.
    Yu, S. H., S. H. Kwak, T. T. H. Nguyen, Y. S. Seo, C. Song, I. K. Mok, and D. Kim (2018) Decrease of insoluble glucan formation in Streptococcus mutans by co-cultivation with Enterococcus faecium T7 and glucanase addition. Biotechnol. Lett. 40: 375–381.CrossRefGoogle Scholar
  13. 13.
    Kim, D. H., J. C. Park, G. E. Jeon, C. S. Kim, and J. H. Seo (2017) Effect of the size and shape of silver nanoparticles on bacterial growth and metabolism by monitoring optical density and fluorescence intensity. Biotechnol. Bioproc. Eng. 22: 210–217.CrossRefGoogle Scholar
  14. 14.
    Hong, S. J., J. H. Lee, E. J. Kim, H. J. Yang, Y. K. Chang, J. S. Park, and S. K. Hong (2017) In vitro and in vivo investigation for biological activities of neoagarooligosaccharides prepared by hydrolyzing agar with beta-agarase. Biotechnol. Bioproc. Eng. 22: 489–496.CrossRefGoogle Scholar
  15. 15.
    Nguyen, T. T. H., N. Kim, S. C. Yeom, S. Han, S. H. Kwak, S. B. Kim, J. S. Park, I. K. Mok, and D. Kim (2017) Biological characterization of epigallocatechin gallate complex with different steviol glucosides. Biotechnol. Bioproc. Eng. 22: 512–517.CrossRefGoogle Scholar
  16. 16.
    Nguyen, T. T., H. J. Woo, H. K. Kang, V. D. Nguyen, Y. M. Kim, D. W. Kim, S. A. Ahn, Y. Xia, and D. Kim (2012) Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett. 34: 831–838.CrossRefGoogle Scholar
  17. 17.
    Song, J., B. Choi, E. J. Jin, Y. Yoon, and K. H. Choi (2012) Curcumin suppresses Streptococcus mutans adherence to human tooth surfaces and extracellular matrix proteins. Eur. J. Clin. Microbiol. 31: 1347–1352.CrossRefGoogle Scholar
  18. 18.
    Mukasa, H., H. Tsumori, and A. Shimamura (1985) Isolation and characterization of an extracellular glucosyltransferase synthesizing insoluble glucan from Streptococcus mutans serotype c. Infect. Immun. 49: 790–796.Google Scholar
  19. 19.
    Shimamura, A., H. Tsumori, and H. Mukasa (1982) Purification and properties of Streptococcus mutans extracellular glucosyltransferase. Biochim. Biophys. Acta. 702: 72–80.CrossRefGoogle Scholar
  20. 20.
    Pankey, G. A., and L. D. Sabath (2004) Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 38: 864–870.CrossRefGoogle Scholar
  21. 21.
    Zhang, F., G. Y. Koh, D. P. Jeansonne, J. Hollingsworth, P. S. Russo, G Vicente, R. W. Stout, and Z. J. Liu (2011) A novel solubility-enhanced curcumin formulation showing stability and maintenance of anticancer activity. J. Pharm. Sci. 100: 2778–2789.CrossRefGoogle Scholar
  22. 22.
    Hu, P., P. Huang, and M. W. Chen (2013) Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Arch. Oral Biol. 58: 1343–1348.CrossRefGoogle Scholar
  23. 23.
    Song, J., B. Choi, E. J. Jin, Y. Yoon, and K. H. Choi (2012) Curcumin suppresses Streptococcus mutans adherence to human tooth surfaces and extracellular matrix proteins. Eur. J. Clin. Microbiol. Infect. Dis. 31: 1347–1352.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Jeesoo Kim
    • 1
  • Thi Thanh Hanh Nguyen
    • 1
  • Juhui Jin
    • 1
  • Iis Septiana
    • 1
  • Gyu-Min Son
    • 1
  • Gang-Hee Lee
    • 1
  • You-Jin Jung
    • 1
  • Dilshad Qureshi
    • 2
  • Il Kyoon Mok
    • 1
  • Kunal Pal
    • 2
  • Soo-Yeon Yang
    • 1
  • Seong-Bo Kim
    • 3
  • Doman Kim
    • 1
    Email author
  1. 1.Graduate School of International Agricultural Technology and Institutes of Green Bioscience & TechnologySeoul National UniversitySeoulKorea
  2. 2.Department of Biotechnology and Medical EngineeringNational Institute of TechnologyRourkelaIndia
  3. 3.CJ CheilJedangLife Ingredient & Material Research InstituteSuwonKorea

Personalised recommendations