Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 1, pp 258–263 | Cite as

Wood Powder as a New Natural Sunscreen Ingredient

  • Sang Cheon Lee
  • Sang Hyun Lee
  • Keehoon WonEmail author
Research Paper
  • 20 Downloads

Abstract

With increasing interest in ultraviolet (UV) protection, many efforts have been made to replace synthetic UV filters in sunscreens with natural materials. Wood is a highly scattering natural material mainly due to its cellular structure and can also absorb light through its components such as lignin. In this work, we first apply wood powder obtained from fine grinding of wood as an UV-shielding additive in sunscreens. The powders originating from softwood, hardwood, and waste wood were characterized using photography, color analysis, size analysis, and FTIR spectroscopy. Effects of its addition to a commercial sunscreen on UV-blocking performance were also examined. The wood powders were light in color unlike technical lignin, and when they were added to the sunscreen, they could enhance the sun protection factor (SPF) value significantly. In particular, the softwood powder increased the SPF value more than threefold at a concentration of 5 wt%.

Keywords

wood powder sunscreen sun protection factor (SPF) color lignin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Park, J. H., J. E. Lee, S. S. Choi, and T. H. Park (2017) Protective effects of silkworm hemolymph extract and its fractions on UV-induced photoaging. Biotechnol. Bioprocess Eng. 22: 37–44.CrossRefGoogle Scholar
  2. 2.
    Hirst, N. G., L. G. Gordon, P. A. Scuffham, and A. C. Green (2012) Lifetime cost-effectiveness of skin cancer prevention through promotion of daily sunscreen use. Value Health 15: 261–268.CrossRefGoogle Scholar
  3. 3.
    Manaia, E. B., R. C. K. Kaminski, M. A. Corrêa, and L. A. Chiavacci (2013) Inorganic UV filters. Braz. J. Pharm. Sci. 49: 201–209.CrossRefGoogle Scholar
  4. 4.
    Morabito, K., N. Shapley, K. Steeley, and A. Tripathi (2011) Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int. J. Cosmet. Sci. 33: 385–390.CrossRefGoogle Scholar
  5. 5.
    Butt, S. and T. Christensen (2000) Toxicity and phototoxicity of chemical sun filters. Radiat. Prot. Dosimetry 91: 283–286.CrossRefGoogle Scholar
  6. 6.
    Alamer, M. and P. D. Darbre (2018) Effects of exposure to six chemical ultraviolet filters commonly used in personal care products on motility of MCF-7 and MDA-MB-231 human breast cancer cells in vitro. J. Appl. Toxicol. 38: 148–159.CrossRefGoogle Scholar
  7. 7.
    Kitamura, R., T. Inagaki, and S. Tsuchikawa (2016) Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy. Opt. Express 24: 3999–4009.CrossRefGoogle Scholar
  8. 8.
    Lesar, B., M. Pavlič, M. Petrič, A. S. Škapin, and M. Humar (2011) Wax treatment of wood slows photodegradation. Polym. Degrad. Stab. 96: 1271–1278.CrossRefGoogle Scholar
  9. 9.
    Ragauskas, A. J., G. T. Beckham, M. J. Biddy, R. Chandra, F. Chen, M. F. Davis, B. H. Davison, R. A. Dixon, P. Gilna, and M. Keller (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344: 1246843.CrossRefGoogle Scholar
  10. 10.
    Kai, D., M. J. Tan, P. L. Chee, Y. K. Chua, Y. L. Yap, and X. J. Loh (2016) Towards lignin-based functional materials in a sustainable world. Green Chem. 18: 1175–1200.CrossRefGoogle Scholar
  11. 11.
    Roopan, S. M. (2017) An overview of natural renewable biopolymer lignin towards nano and biotechnological applications. Int. J. Biol. Macromol. 103: 508–514.CrossRefGoogle Scholar
  12. 12.
    Qian, Y., X. Qiu, and S. Zhu (2015) Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens. Green Chem. 17: 320–324.CrossRefGoogle Scholar
  13. 13.
    Qian, Y., X. Qiu, and S. Zhu (2016) Sunscreen performance of lignin from different technical resources and their general synergistic effect with synthetic sunscreens. ACS Sustain. Chem. Eng. 4: 4029–4035.CrossRefGoogle Scholar
  14. 14.
    Yang, S., M. Choi, and H. Shin (2017) UV protection effect of lignin extracted by steam explosion technique from domestic bamboo stems. KSBB J. 32: 342–351.CrossRefGoogle Scholar
  15. 15.
    Wang, J., Y. Deng, Y. Qian, X. Qiu, Y. Ren, and D. Yang (2016) Reduction of lignin color via one-step UV irradiation. Green Chem. 18: 695–699.CrossRefGoogle Scholar
  16. 16.
    Zhang, H., Y. Bai, B. Yu, X. Liu, and F. Chen (2017) A practicable process for lignin color reduction: fractionation of lignin using methanol/water as a solvent. Green Chem. 19: 5152–5162.CrossRefGoogle Scholar
  17. 17.
    Yao, C., F. Yongming, G. Jianmin, and L. Houkun (2012) Coloring characteristics of in situ lignin during heat treatment. Wood Sci. Technol. 46: 33–40.CrossRefGoogle Scholar
  18. 18.
    Kim, J. Y., H. Hwang, S. Oh, Y. S. Kim, U. J. Kim, and J. W. Choi (2014) Investigation of structural modification and thermal characteristics of lignin after heat treatment. Int. J. Biol. Macromol. 66: 57–65.CrossRefGoogle Scholar
  19. 19.
    Lee, S. C., T. M. T. Tran, J. W. Choi, and K. Won (2019) Lignin for white natural sunscreens. Int. J. Biol. Macromol. 122: 549–554.CrossRefGoogle Scholar
  20. 20.
    Karinkanta, P., A. Ämmälä, M. Illikainen, and J. Niinimäki (2018) Fine grinding of wood-overview from wood breakage to applications. Biomass Bioenergy 113: 31–44.CrossRefGoogle Scholar
  21. 21.
    Dimitrovska Cvetkovska, A., S. Manfredini, P. Ziosi, S. Molesini, V. Dissette, I. Magri, C. Scapoli, A. Carrieri, E. Durini, and S. Vertuani (2017) Factors affecting SPF in vitro measurement and correlation with in vivo results. Int. J. Cosmet. Sci. 39: 310–319.CrossRefGoogle Scholar
  22. 22.
    Diffey, B. and J. Robson (1989) A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum. J. Soc. Cosmet. Chem. 40: 127–133.Google Scholar
  23. 23.
    W. Schutyser, T. Renders, S. Van den Bosch, S.-F. Koelewijn, G. T. Beckham, and B. F. Sels (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47: 852–908.CrossRefGoogle Scholar
  24. 24.
    Yun, I. S., W. J. Lee, D. K. Rah, Y. O. Kim, and B. Y. Park (2010) Skin color analysis using a spectrophotometer in Asians. Skin Res. Technol. 16: 311–315.Google Scholar
  25. 25.
    Virtanen, H., K. Vehmas, T. Erho, and M. Smolander (2014) Flexographic printing of Trametes versicolor laccase for indicator applications. Packag. Technol. Sci. 27: 819–830.CrossRefGoogle Scholar
  26. 26.
    Napper, I. E., A. Bakir, S. J. Rowland, and R. C. Thompson (2015) Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar. Pollut. Bull. 99: 178–185.CrossRefGoogle Scholar
  27. 27.
    Lee, H. R., R. J. Kazlauskas, and T. H. Park (2017) Mild pretreatment of yellow poplar biomass using sequential dilute acid and enzymatically-generated peracetic acid to enhance cellulase accessibility. Biotechnol. Bioprocess Eng. 22: 405–412.CrossRefGoogle Scholar
  28. 28.
    Poletto, M., A. J. Zattera, and R. M. Santana (2012) Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J. Appl. Polym. Sci. 126: e337–E344.CrossRefGoogle Scholar
  29. 29.
    You, T. and F. Xu (2016) Applications of molecular spectroscopic methods to the elucidation of lignin structure. pp. 235–260. In: M.T. Stauffer (eds.). Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences. InTech, Rijeka, UK.Google Scholar
  30. 30.
    Faix, O (1992) Fourier transform infrared spectroscopy. pp. 83–109. In: S. Y. Lin and C. W. Dence (eds.). Methods in Lignin Chemistry. Springer-Verlag Berlin, Heidelberg, Germany.Google Scholar
  31. 31.
    Hoareau, W., W. G. Trindade, B. Siegmund, A. Castellan, and E. Frollini (2004) Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polym. Degrad. Stab. 86: 567–576.CrossRefGoogle Scholar
  32. 32.
    Sun, Y. and J. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1–11.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringDongguk University-SeoulSeoulKorea
  2. 2.Department of Biological EngineeringKonkuk UniversitySeoulKorea

Personalised recommendations