Biotechnology and Bioprocess Engineering

, Volume 24, Issue 1, pp 85–94 | Cite as

In vivo Protein Evolution, Next Generation Protein Engineering Strategy: from Random Approach to Target-specific Approach

  • Jin Young Kim
  • Hee-Wang Yoo
  • Pyung-Gang Lee
  • Sun-Gu Lee
  • Joo-Hyun Seo
  • Byung-Gee KimEmail author
Review Paper


In vivo protein evolution is a protein engineering approach that is performed by both generating mutagenesis libraries and selecting desired mutants in a cell. Despite its clear advantages in some aspects, the approach has not much been popularized compared to in vitro protein evolution methods which employ in vitro mutagenesis. The reason behind this unpopularity is the limitations in the low library diversity and specificity of in vivo mutagenic methods compared to those of in vitro mutagenic methods. While various non-specific and specific in vitro mutagenic methods, which allowed us to use computational design principles as well as random approach in the design of mutant library, had been developed, in vivo mutagenic methods were stalled at the step of random mutagenesis since the in vivo generation of target-specific library with high specificity and broad mutational spectra is quite challenging. Recently, various in vivo protein mutagenesis methods have been developed to generate rather focused libraries in a target-specific manner, thanks to the significant decrease in the price of oligomer synthesis and better understanding of DNA targeting systems. In this review, we examined the trends of in vivo protein evolution and inspect some of the state-of-the-art techniques that were recently introduced for in vivo protein mutagenesis in a target-specific manner. In vivo protein mutagenesis is a subject undergoing intense study and will become more specific and thorough simultaneously.


in vivo protein evolution random in vivo protein evolution target-specific in vivo protein evolution screening method focused library 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mullis, K. B. (1985). US Patent No. US4683202A., Cetus Corp.Google Scholar
  2. 2.
    Moore, J. C. and F. H. Arnold (1996) Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nature Biotechnology 14: 458.CrossRefGoogle Scholar
  3. 3.
    Gram, H., L.-A. Marconi, C. F. Barbas, T. A. Collet, R. A. Lerner, and A. S. Kang (1992) In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proceedings of the National Academy of Sciences 89: 3576–3580.CrossRefGoogle Scholar
  4. 4.
    Liao, H., T. McKenzie, and R. Hageman (1986) Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proceedings of the National Academy of Sciences 83: 576–580.CrossRefGoogle Scholar
  5. 5.
    Chen, K. and F. H. Arnold (1993) Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proceedings of the National Academy of Sciences 90: 5618–5622.CrossRefGoogle Scholar
  6. 6.
    Zhou, Y., X. Zhang, and R. H. Ebright (1991) Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymerase. Nucleic Acids Research 19: 6052.CrossRefGoogle Scholar
  7. 7.
    Stemmer, W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389.CrossRefGoogle Scholar
  8. 8.
    Kano, H., S. Taguchi, and H. Momose (1997) Cold adaptation of a mesophilic serine protease, subtilisin, by in vitro random mutagenesis. Applied Microbiology and Biotechnology 47: 46–51.CrossRefGoogle Scholar
  9. 9.
    Zhang, J.-H., G. Dawes, and W. P. Stemmer (1997) Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proceedings of the National Academy of Sciences 94: 4504–4509.CrossRefGoogle Scholar
  10. 10.
    Cherry, J. R., M. H. Lamsa, P. Schneider, J. Vind, A. Svendsen, A. Jones, and A. H. Pedersen (1999) Directed evolution of a fungal peroxidase. Nature Biotechnology 17: 379.CrossRefGoogle Scholar
  11. 11.
    Crameri, A., E. A. Whitehorn, E. Tate, and W. P. Stemmer (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnology 14: 315.CrossRefGoogle Scholar
  12. 12.
    Crameri, A., G. Dawes, E. Rodriguez Jr, S. Silver, and W. P. Stemmer (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nature Biotechnology 15: 436.CrossRefGoogle Scholar
  13. 13.
    Karplus, M. and G. A. Petsko (1990) Molecular dynamics simulations in biology. Nature 347: 631.CrossRefGoogle Scholar
  14. 14.
    Leach, A. R. (1994) Ligand docking to proteins with discrete side-chain flexibility. Journal of Molecular Biology 235: 345–356.CrossRefGoogle Scholar
  15. 15.
    Šali, A., L. Potterton, F. Yuan, H. van Vlijmen, and M. Karplus (1995) Evaluation of comparative protein modeling by MODELLER. Proteins: Structure, Function, and Bioinformatics 23: 318–326.CrossRefGoogle Scholar
  16. 16.
    Huang, P.-S., S. E. Boyken, and D. Baker (2016) The coming of age of de novo protein design. Nature 537: 320.CrossRefGoogle Scholar
  17. 17.
    Chica, R. A., N. Doucet, and J. N. Pelletier (2005) Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Current Opinion in Biotechnology 16: 378–384.CrossRefGoogle Scholar
  18. 18.
    Hanson, J., K. Paliwal, T. Litfin, Y. Yang, Y. Zhou, and A. Valencia (2018) Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks. BioinformaticsCrossRefGoogle Scholar
  19. 19.
    Blagodatski, A. and V. L. Katanaev (2011) Technologies of directed protein evolution in vivo. Cellular and Molecular Life Sciences 68: 1207–1214.CrossRefGoogle Scholar
  20. 20.
    Yeom, S.-J., M. Kim, K. K. Kwon, Y. Fu, E. Rha, S.-H. Park, H. Lee, H. Kim, D.-H. Lee, and D.-M. Kim (2018) A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts. Nature Communications 9: 5053.CrossRefGoogle Scholar
  21. 21.
    Scott, D. J. and A. Plückthun (2013) Direct molecular evolution of detergent-stable G protein-coupled receptors using polymer encapsulated cells. Journal of Molecular Biology 425: 662–677.CrossRefGoogle Scholar
  22. 22.
    Wang, T., K. Birsoy, N. W. Hughes, K. M. Krupczak, Y. Post, J. J. Wei, E. S. Lander, and D. M. Sabatini (2015) Identification and characterization of essential genes in the human genome. Science 350: 1096–1101.CrossRefGoogle Scholar
  23. 23.
    Packer, M. S. and D. R. Liu (2015) Methods for the directed evolution of proteins. Nature Reviews Genetics 16: 379.CrossRefGoogle Scholar
  24. 24.
    Longwell, C. K., L. Labanieh, and J. R. Cochran (2017) Highthroughput screening technologies for enzyme engineering. Current Opinion in Biotechnology 48: 196–202.CrossRefGoogle Scholar
  25. 25.
    Morlock, L. K., D. Böttcher, and U. T. Bornscheuer (2018) Simultaneous detection of NADPH consumption and H 2O 2 production using the Ampliflu™ Red assay for screening of P450 activities and uncoupling. Applied Microbiology and Biotechnology 102: 985–994.CrossRefGoogle Scholar
  26. 26.
    Choi, Y. H., J. H. Kim, J. H. Park, N. Lee, D.-H. Kim, K.-S. Jang, I.-H. Park, and B.-G. Kim (2013) Protein engineering of α2, 3/2, 6-sialyltransferase to improve the yield and productivity of in vitro sialyllactose synthesis. Glycobiology 24: 159–169.CrossRefGoogle Scholar
  27. 27.
    Jung, E., B. G. Park, H.-W. Yoo, J. Kim, K.-Y. Choi, and B.-G. Kim (2018) Semi-rational engineering of CYP153A35 to enhance ω-hydroxylation activity toward palmitic acid. Applied Microbiology and Biotechnology 102: 269–277.CrossRefGoogle Scholar
  28. 28.
    Halperin, S. O., C. J. Tou, E. B. Wong, C. Modavi, D. V. Schaffer, and J. E. Dueber (2018) CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 1.CrossRefGoogle Scholar
  29. 29.
    Garst, A. D., M. C. Bassalo, G. Pines, S. A. Lynch, A. L. Halweg-Edwards, R. Liu, L. Liang, Z. Wang, R. Zeitoun, and W. G. Alexander (2017) Genome-wide mapping of mutations at singlenucleotide resolution for protein, metabolic and genome engineering. Nature Biotechnology 35: 48.CrossRefGoogle Scholar
  30. 30.
    Moore, C. L., L. J. Papa III, and M. D. Shoulders (2018) A processive protein chimera introduces mutations across defined DNA regions in vivo. Journal of the American Chemical Society Google Scholar
  31. 31.
    Koch, D. J., M. M. Chen, J. B. van Beilen, and F. H. Arnold (2009) In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6. Applied and Environmental Microbiology 75: 337–344.CrossRefGoogle Scholar
  32. 32.
    Yun, H., B.-Y. Hwang, J.-H. Lee, and B.-G. Kim (2005) Use of enrichment culture for directed evolution of the Vibrio fluvialis JS17 ω-transaminase, which is resistant to product inhibition by aliphatic ketones. Applied and Environmental Microbiology 71: 4220–4224.CrossRefGoogle Scholar
  33. 33.
    Santoro, S. W. and P. G. Schultz (2002) Directed evolution of the site specificity of Cre recombinase. Proceedings of the National Academy of Sciences 99: 4185–4190.CrossRefGoogle Scholar
  34. 34.
    Yi, L., M. C. Gebhard, Q. Li, J. M. Taft, G. Georgiou, and B. L. Iverson (2013) Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries. Proceedings of the National Academy of Sciences 110: 7229–7234.CrossRefGoogle Scholar
  35. 35.
    Aharoni, A., K. Thieme, C. P. Chiu, S. Buchini, L. L. Lairson, H. Chen, N. C. Strynadka, W. W. Wakarchuk, and S. G. Withers (2006) High-throughput screening methodology for the directed evolution of glycosyltransferases. Nature Methods 3: 609.CrossRefGoogle Scholar
  36. 36.
    Greener, A., M. Callahan, and B. Jerpseth (1997) An efficient random mutagenesis technique using an E. coli mutator strain. Molecular Biotechnology 7: 189–195.CrossRefGoogle Scholar
  37. 37.
    Ehrig, T., D. J. O’Kane, and F. G. Prendergast (1995) Green fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Letters 367: 163–166.CrossRefGoogle Scholar
  38. 38.
    Carr, R., M. Alexeeva, A. Enright, T. S. Eve, M. J. Dawson, and N. J. Turner (2003) Directed evolution of an amine oxidase possessing both broad substrate specificity and high enantioselectivity. Angewandte Chemie International Edition 42: 4807–4810.CrossRefGoogle Scholar
  39. 39.
    Callanan, M. J., W. M. Russell, and T. R. Klaenhammer (2007) Modification of Lactobacillus β-glucuronidase activity by random mutagenesis. Gene 389: 122–127.CrossRefGoogle Scholar
  40. 40.
    Badran, A. H. and D. R. Liu (2015) Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nature Communications 6: 8425.CrossRefGoogle Scholar
  41. 41.
    Hu, J. H., S. M. Miller, M. H. Geurts, W. Tang, L. Chen, N. Sun, C. M. Zeina, X. Gao, H. A. Rees, and Z. Lin (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556: 57.CrossRefGoogle Scholar
  42. 42.
    Esvelt, K. M., J. C. Carlson, and D. R. Liu (2011) A system for the continuous directed evolution of biomolecules. Nature 472: 499.CrossRefGoogle Scholar
  43. 43.
    Badran, A. H., V. M. Guzov, Q. Huai, M. M. Kemp, P. Vishwanath, W. Kain, A. M. Nance, A. Evdokimov, F. Moshiri, and K. H. Turner (2016) Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533: 58.CrossRefGoogle Scholar
  44. 44.
    Packer, M. S., H. A. Rees, and D. R. Liu (2017) Phage-assisted continuous evolution of proteases with altered substrate specificity. Nature Communications 8: 956.CrossRefGoogle Scholar
  45. 45.
    Wang, T., A. H. Badran, T. P. Huang, and D. R. Liu (2018) Continuous directed evolution of proteins with improved soluble expression. Nature Chemical Biology 1.Google Scholar
  46. 46.
    Wang, H. H., F. J. Isaacs, P. A. Carr, Z. Z. Sun, G. Xu, C. R. Forest, and G. M. Church (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460: 894.CrossRefGoogle Scholar
  47. 47.
    Wang, H. H., H. Kim, L. Cong, J. Jeong, D. Bang, and G. M. Church (2012) Genome-scale promoter engineering by coselection MAGE. Nature Methods 9: 591.CrossRefGoogle Scholar
  48. 48.
    Isaacs, F. J., P. A. Carr, H. H. Wang, M. J. Lajoie, B. Sterling, L. Kraal, A. C. Tolonen, T. A. Gianoulis, D. B. Goodman, and N. B. Reppas (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333: 348–353.CrossRefGoogle Scholar
  49. 49.
    Liang, L., R. Liu, A. D. Garst, T. Lee, G. T. Beckham, and R. T. Gill (2017) CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coli. Metabolic Engineering 41: 1–10.CrossRefGoogle Scholar
  50. 50.
    Reynolds, T. S., C. M. Courtney, K. E. Erickson, L. M. Wolfe, A. Chatterjee, P. Nagpal, and R. T. Gill (2017) ROS mediated selection for increased NADPH availability in Escherichia coli. Biotechnology and Bioengineering 114: 2685–2689.CrossRefGoogle Scholar
  51. 51.
    Higuchi, R., B. Krummel, and R. Saiki (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Research 16: 7351–7367.CrossRefGoogle Scholar
  52. 52.
    Caglio, R., F. Valetti, P. Caposio, G. Gribaudo, E. Pessione, and C. Giunta (2009) Fine tuning of catalytic properties of catechol 1, 2 dioxygenase by active site tailoring. Chembiochem. 10: 1015–1024.CrossRefGoogle Scholar
  53. 53.
    Kim, H.-J., S. Y. Kang, J. J. Park, and P. Kim (2011) Novel activity of UDP-galactose-4-epimerase for free monosaccharide and activity improvement by active site-saturation mutagenesis. Applied Biochemistry and Biotechnology 163: 444–451.CrossRefGoogle Scholar
  54. 54.
    De Groeve, M. R., M. De Baere, L. Hoflack, T. Desmet, E. J. Vandamme, and W. Soetaert (2009) Creating lactose phosphorylase enzymes by directed evolution of cellobiose phosphorylase. Protein Engineering, Design & Selection 22: 393–399.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Jin Young Kim
    • 1
  • Hee-Wang Yoo
    • 1
  • Pyung-Gang Lee
    • 2
    • 3
  • Sun-Gu Lee
    • 4
  • Joo-Hyun Seo
    • 5
  • Byung-Gee Kim
    • 1
    • 2
    • 3
    Email author
  1. 1.Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulKorea
  2. 2.School of Chemical and Biological Engineering · Institute of Engineering ResearchSeoul National UniversitySeoulKorea
  3. 3.Institute of Molecular Biology and GeneticsSeoul National UniversitySeoulKorea
  4. 4.Department of Chemical and Biochemical EngineeringPusan National UniversityBusanKorea
  5. 5.Department of Bio and Fermentation Convergence TechnologyKookmin UniversitySeoulKorea

Personalised recommendations