Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 1, pp 232–239 | Cite as

Isolation of Novel CO Converting Microorganism Using Zero Valent Iron for a Bioelectrochemical System (BES)

  • Hyeon Sung Im
  • Changman Kim
  • Young Eun Song
  • Jiyun Baek
  • Chae Ho Im
  • Jung Rae KimEmail author
Research Paper
  • 24 Downloads

Abstract

Carbon monoxide (CO) is one of the main waste gas components of the steel industry and biomass gasification process. CO has also been highlighted as a feedstock for biological conversion to platform and valueadded chemicals. Conventional CO-converting strains have drawbacks of slow growth rate and high sensitivity to oxygen as well as low conversion yield. Most CO conversion microbes harbor the Wood-Ljungdahl pathway (WLP) and CO-dehydrogenase, and the reducing equivalent is significantly limited for acetyl-CoA synthesis. In this study, electrochemically active CO converting strains were isolated and characterized using zero valent iron (ZVI) granules (Fe0) as an external electron donor. The strains isolated from ZVI augmented enrichment could also use a carbon electrode as the electron donor, and simultaneously convert CO to acetate and VFAs in a bioelectrochemical system. From enrichment and isolation with ZVI, both Clostridium sp. HN02 and Fonticella sp. HN43 were isolated and showed higher performance for acetate production from CO in BES, and electrochemical activity by cyclic voltammetry.

Keywords

carbon monoxide fermentation iron oxidation Wood-Ljungdahl pathway reducing power Clostridium sp. HN02 Fonticella sp. HN43 bioelectrochemical system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12257_2018_373_MOESM1_ESM.pdf (1.6 mb)
Supplementary material, approximately 1460 KB.

References

  1. 1.
    Clomburg, J. M., A. M. Crumbley, and R. Gonzalez (2017) Industrial biomanufacturing: The future of chemical production. Science 355.Google Scholar
  2. 2.
    Nielsen, D. U., X.-M. Hu, K. Daasbjerg, and T. Skrydstrup (2018) Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nature Catalysis 1: 244–254.CrossRefGoogle Scholar
  3. 3.
    Sipma, J., A. Henstra, S. Parshina, P. N. L. Lens, G. Lettinga, and A. J. M. Stams (2008) Microbial CO Conversions with Applications in Synthesis Gas Purification and Bio-Desulfurization.Google Scholar
  4. 4.
    Feaster, J. T., C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Nørskov, and T. F. Jaramillo (2017) Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catalysis 7: 4822–4827.CrossRefGoogle Scholar
  5. 5.
    Geelhoed, J. S., A. M. Henstra, and A. J. M. Stams (2016) Carboxydotrophic growth of Geobacter sulfurreducens. Applied Microbiology and Biotechnology 100: 997–1007.CrossRefGoogle Scholar
  6. 6.
    Humphreys, C. M. and N. P. Minton (2018) Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Current Opinion in Biotechnology 50: 174–181.CrossRefGoogle Scholar
  7. 7.
    Berg, I. A. (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Applied and Environmental Microbiology 77: 1925–1936.CrossRefGoogle Scholar
  8. 8.
    Costa Gomes, M. F. (2007) Low-pressure solubility and thermodynamics of solvation of carbon dioxide, ethane, and hydrogen in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide between temperatures of 283 K and 343 K. Journal of Chemical & Engineering Data 52: 472–475.CrossRefGoogle Scholar
  9. 9.
    Nichols, N., B. Dien, and R. Bothast (2001) Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Applied Microbiology and Biotechnology 56: 120–125.CrossRefGoogle Scholar
  10. 10.
    Sahu, A. K., J. Siljudalen, T. Trydal, and B. Rusten (2013) Utilisation of wastewater nutrients for microalgae growth for anaerobic codigestion. Journal of Environmental Management 122: 113–120.CrossRefGoogle Scholar
  11. 11.
    Choi, O., T. Kim, H. M. Woo, and Y. Um (2014) Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Scientific Reports 4: 6961.CrossRefGoogle Scholar
  12. 12.
    Han, S., X.-Y. Gao, H.-J. Ying, and C. C. Zhou (2016) NADH gene manipulation for advancing bioelectricity in Clostridium ljungdahlii microbial fuel cells. Green Chemistry 18: 2473–2478.CrossRefGoogle Scholar
  13. 13.
    Im, C., Y. E. Song, B.-H. Jeon, and J. R. Kim (2016) Biologically activated graphite fiber electrode for autotrophic acetate production from CO2 in a bioelectrochemical system.Google Scholar
  14. 14.
    Im, C. H., C. Kim, Y. E. Song, S.-E. Oh, B.-H. Jeon, and J. R. Kim (2018) Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator. Chemosphere 191: 166–173.CrossRefGoogle Scholar
  15. 15.
    Jourdin, L., S. M. T. Raes, C. J. N. Buisman, and D. P. B. T. B. Strik (2018) Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density. Frontiers in Energy Research 6.CrossRefGoogle Scholar
  16. 16.
    Kim, C., S. K. Ainala, Y.-K. Oh, B.-H. Jeon, S. Park, and J. R. Kim (2016) Metabolic flux change in Klebsiella pneumoniae L17 by anaerobic respiration in microbial fuel cell. Biotechnology and Bioprocess Engineering 21: 250–260.CrossRefGoogle Scholar
  17. 17.
    Najafpour, G. and H. Younesi (2006) Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii. Enzyme and Microbial Technology 38: 223–228.CrossRefGoogle Scholar
  18. 18.
    Zhu, H., B. H. Shanks, and T. J. Heindel (2008) Enhancing CO−water mass transfer by functionalized MCM41 nanoparticles. Industrial & Engineering Chemistry Research 47: 7881–7887.CrossRefGoogle Scholar
  19. 19.
    Batlle-Vilanova, P., S. Puig, R. Gonzalez-Olmos, M. D. Balaguer, and J. Colprim (2016) Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture. Journal of Chemical Technology & Biotechnology 91: 921–927.CrossRefGoogle Scholar
  20. 20.
    Batlle-Vilanova, P., S. Puig, R. Gonzalez-Olmos, A. Vilajeliu-Pons, M. D. Balaguer, and J. Colprim (2015) Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode. RSC Advances 5: 52243–52251.CrossRefGoogle Scholar
  21. 21.
    Bajracharya, S., R. Yuliasni, K. Vanbroekhoven, C. J. N. Buisman, D. P. B. T. B. Strik, and D. Pant (2017) Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis. Bioelectrochemistry 113: 26–34.CrossRefGoogle Scholar
  22. 22.
    Raghavulu, S. V., P. S. Babu, R. K. Goud, G. V. Subhash, S. Srikanth, and S. V. Mohan (2012) Bioaugmentation of an electrochemically active strain to enhance the electron discharge of mixed culture: process evaluation through electro-kinetic analysis. RSC Advances 2: 677–688.CrossRefGoogle Scholar
  23. 23.
    Bajracharya, S., A. ter Heijne, X. Dominguez Benetton, K. Vanbroekhoven, C. J. N. Buisman, D. P. B. T. B. Strik, and D. Pant (2015) Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresource Technology 195: 14–24.CrossRefGoogle Scholar
  24. 24.
    Abrini, J., H. Naveau, and E.-J. Nyns (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide.CrossRefGoogle Scholar
  25. 25.
    DSMZ. https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_ Medium141.pdf.Google Scholar
  26. 26.
    Levy, P. F., G. W. Barnard, D. V. Garcia-Martinez, J. E. Sanderson, and D. L. Wise (1981) Organic acid production from CO2/H2 and CO/H2 by mixed-culture anaerobes. Biotechnology and Bioengineering 23: 2293–2306.CrossRefGoogle Scholar
  27. 27.
    Lane, D. J., B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin, and N. R. Pace (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences 82: 6955–6959.CrossRefGoogle Scholar
  28. 28.
    Tamura, K. and M. Nei (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512–526.Google Scholar
  29. 29.
    Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, And Maximum Parsimony Methods.Google Scholar
  30. 30.
    Bryant, M. P. (1972) Commentary on the Hungate technique for culture of anaerobic bacteria. The American Journal of Clinical Nutrition 25: 1324–1328.CrossRefGoogle Scholar
  31. 31.
    Carlson, E. D. and E. T. Papoutsakis (2017) Heterologous Expression of the Clostridium Carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO2 and Oxidation of CO by Clostridium acetobutylicum. Applied and Environmental Microbiology 83: e00829–00817.CrossRefGoogle Scholar
  32. 32.
    Mock, J., Y. Zheng, A. P. Mueller, S. Ly, L. Tran, S. Segovia, S. Nagaraju, M. Köpke, P. Dürre, and R. K. Thauer (2015) energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. Journal of Bacteriology 197: 2965–2980.CrossRefGoogle Scholar
  33. 33.
    Lee, J. H., S. Lama, J. R. Kim, and S. H. Park (2018) Production of 1,3-propanediol from glucose by recombinant Escherichia coli BL21(DE3). Biotechnology and Bioprocess Engineering 23: 250–258.CrossRefGoogle Scholar
  34. 34.
    Lee, H.-M., B.-Y. Jeon, and M.-K. Oh (2016) Microbial production of ethanol from acetate by engineered Ralstonia eutropha. Biotechnology and Bioprocess Engineering 21: 402–407.CrossRefGoogle Scholar
  35. 35.
    Kim, C., M. Y. Kim, I. Michie, B.-H. Jeon, G. C. Premier, S. Park, and J. R. Kim (2017) Anodic electro-fermentation of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae L17 in a bioelectrochemical system. Biotechnology for Biofuels 10: 199.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Hyeon Sung Im
    • 1
  • Changman Kim
    • 1
  • Young Eun Song
    • 1
  • Jiyun Baek
    • 1
  • Chae Ho Im
    • 1
  • Jung Rae Kim
    • 1
    Email author
  1. 1.School of Chemical and Biomolecular EngineeringPusan National UniversityBusanKorea

Personalised recommendations