Advertisement

A Review of Image Analysis in Biochemical Engineering

  • Sang-Kyu JungEmail author
Review Paper
  • 27 Downloads

Abstract

The purpose of image analysis is to extract useful information from images. Since modern image analysis allows fast, accurate, and reliable quantitative analysis, it is widely used at present in many areas of research and development. In this article, I review the image analysis methods that are commonly used in biochemical engineering, for which the subjects of the image analysis vary from molecules or cells to whole animals or biomaterials. Images captured by imaging hardware, which is not limited to digital cameras, are processed in multiple steps by applying various image processing algorithms to extract quantitative features. Image analysis has been successfully applied in diverse applications, ranging from simple densitometric evaluation to animal phenotyping and biomass analysis. Although machine learning is poised to become an increasingly common method of image analysis, traditional methods utilizing blob extraction from binarized images are likely to remain in use for the foreseeable future.

Keywords

image processing morphology analysis binarization machine learning densitometric analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castleman, K. R. (1995) The image processing handbook, By John C Russ. Bioimaging 3: 145–146.CrossRefGoogle Scholar
  2. 2.
    Mason, W. T. (1999) Fluorescent and luminescent probes for biological activity: A practical guide to technology for quantitative real–time analysis. Academic Press, Cambridge, MA, USA.Google Scholar
  3. 3.
    Taylor, D. L., E. S. Woo, and K. A. Giuliano (2001) Real–time molecular and cellular analysis: the new frontier of drug discovery. Curr. Opin. Biotechnol. 12: 75–81.CrossRefGoogle Scholar
  4. 4.
    Eliceiri, K. W., M. R. Berthold, I. G. Goldberg, L. Ibáñez, B. S. Manjunath, M. E. Martone, R. F. Murphy, H. Peng, A. L. Plant, and B. Roysam (2012) Biological imaging software tools. Nat. Methods 9: 697.CrossRefGoogle Scholar
  5. 5.
    Furia, L., P. G. Pelicci, and M. Faretta (2013) A computational platform for robotized fluorescence microscopy (I): Highcontent image–based cell–cycle analysis}. Cytometry Part A} 83A: 333–Google Scholar
  6. 6.
    Gassmann, M., B. Grenacher, B. Rohde, and J. Vogel (2009) Quantifying Western blots: Pitfalls of densitometry. Electrophoresis 30: 1845–1855.CrossRefGoogle Scholar
  7. 7.
    Tuominen, V. J., S. Ruotoistenmäki, A. Viitanen, M. Jumppanen, and J. Isola (2010) ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki–67. Breast Cancer Res. 12: R56.Google Scholar
  8. 8.
    Janes, K. A. (2015) An analysis of critical factors for quantitative immunoblotting. Sci. Signal. 8: rs2–rs2.Google Scholar
  9. 9.
    Treskatis, S. K., V. Orgeldinger, H. Wolf, and E. D. Gilles (1997) Morphological characterization of filamentous microorganisms in submerged cultures by on–line digital image analysis and pattern recognition. Biotechnol. Bioeng. 53: 191–201.CrossRefGoogle Scholar
  10. 10.
    Steel, R., S. Martin, and C. Lentz (1954) A standard inoculum for citric acid production in submerged culture. Can. J. Microbiol. 1: 150–157.CrossRefGoogle Scholar
  11. 11.
    Cox, P. and C. Thomas (1992) Classification and measurement of fungal pellets by automated image analysis. Biotechnol. Bioeng. 39: 945–952.CrossRefGoogle Scholar
  12. 12.
    Duan, Y., L. Wang, and H. Chen (2012) Digital image analysis and fractal–based kinetic modelling for fungal biomass determination in solid–state fermentation. Biochem. Eng. J. 67: 60–67.CrossRefGoogle Scholar
  13. 13.
    Kowalska, A., T. Boruta, and M. Bizukojć (2018) Morphological evolution of various fungal species in the presence and absence of aluminum oxide microparticles: Comparative and quantitative insights into microparticle–enhanced cultivation (MPEC). MicrobiologyOpen e00603.Google Scholar
  14. 14.
    Prober, D. A., J. Rihel, A. A. Onah, R.–J. Sung, and A. F. Schier (2006) Hypocretin/orexin overexpression induces an insomnialike phenotype in zebrafish. J. Neurosci. 26: 13400–13410.CrossRefGoogle Scholar
  15. 15.
    Jung, S.–K., X. Qu, B. Aleman–Meza, T. Wang, C. Riepe, Z. Liu, Q. Li, and W. Zhong (2015) Multi–endpoint, high–throughput study of nanomaterial toxicity in Caenorhabditis elegans. Environ. Sci. Technol. 49: 2477–2485.CrossRefGoogle Scholar
  16. 16.
    Rihel, J., D. A. Prober, A. Arvanites, K. Lam, S. Zimmerman, S. Jang, S. J. Haggarty, D. Kokel, L. L. Rubin, R. T. Peterson, and A. F. Schier (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327: 348–351.CrossRefGoogle Scholar
  17. 17.
    Labocha, M. K., S.–K. Jung, B. Aleman–Meza, Z. Liu, and W. Zhong (2015) WormGender–Open–source software for automatic Caenorhabditis elegans sex ratio measurement. PLoS One 10: e0139724.CrossRefGoogle Scholar
  18. 18.
    Sasamoto, H., Y. Azumi, M. Shimizu, Y.–k. Hachinohe, and S. Suzuki (2018) In vitro bioassay of allelopathy of Arabidopsis thaliana by sandwich method and protoplast co–culture method with digital image analysis. Plant Biotechnol. 34: 199–202.CrossRefGoogle Scholar
  19. 19.
    Morais, C. L., K. M. Lima, and F. L. Martin (2018) Colourimetric determination of high–density lipoprotein (HDL) cholesterol using Red–Green–Blue digital colour imaging. Anal. Lett. 1–8.Google Scholar
  20. 20.
    Huang, C., L. Wang, X. Chen, X. Wei, and J. Liang (2018) The rising behaviors of single bubbles in stagnant turpentine and pine resin solutions. Exp. Therm. Fluid Sci. 98: 170–180.CrossRefGoogle Scholar
  21. 21.
    Zemanová, L., A. Schenk, M. J. Valler, G. U. Nienhaus, and R. Heilker (2003) Confocal optics microscopy for biochemical and cellular high–throughput screening. Drug Discov. Today. 8: 1085–1093.CrossRefGoogle Scholar
  22. 22.
    Ciesielski, P. N., W. Wang, X. Chen, T. B. Vinzant, M. P. Tucker, S. R. Decker, M. E. Himmel, D. K. Johnson, and B. S. Donohoe (2014) Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 2: morphological and structural substrate analysis. Biotechnol. Biofuels 7: 47.CrossRefGoogle Scholar
  23. 23.
    Nikolaisen, J., L. I. Nilsson, I. K. Pettersen, P. H. Willems, J. B. Lorens, W. J. Koopman, and K. J. Tronstad (2014) Automated quantification and integrative analysis of 2D and 3D mitochondrial shape and network properties. PLoS One 9: e101365.CrossRefGoogle Scholar
  24. 24.
    Feng, X., C. Yu, X. Liu, Y. Chen, H. Zhen, K. Sheng, and Y. He (2018) Nondestructive and rapid determination of lignocellulose components of biofuel pellet using online hyperspectral imaging system. Biotechnol. Biofuels 11: 88.CrossRefGoogle Scholar
  25. 25.
    Jung, S.–K., B. Aleman–Meza, C. Riepe, and W. Zhong (2014) QuantWorm: A comprehensive software package for Caenorhabditis elegans phenotypic assays. PLoS One 9: e84830.CrossRefGoogle Scholar
  26. 26.
    Brandenberg, N. and M. P. Lutolf (2016) In situ patterning of microfluidic networks in 3D cell–laden hydrogels. Adv. Mater. 28: 7450–7456.CrossRefGoogle Scholar
  27. 27.
    Marbà–Ardébol, A.–M., J. Emmerich, M. Muthig, P. Neubauer, and S. Junne (2018) Real–time monitoring of the budding index in Saccharomyces cerevisiae batch cultivations with in situ microscopy. Microb. Cell Fact. 17: 73.CrossRefGoogle Scholar
  28. 28.
    Churgin, M. A., S.–K. Jung, C.–C. Yu, X. Chen, D. M. Raizen, and C. Fang–Yen (2017) Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLife 6.Google Scholar
  29. 29.
    Hirner, F. S., J. Hwang, C. Bae, C. Patel, T. Gupta, and A. K. Agarwal (2019) Nanostructure characterization of soot particles from biodiesel and diesel spray flame in a constant volume combustion chamber. Fuel 235: 130–149.CrossRefGoogle Scholar
  30. 30.
    Beyene, D., M. Chae, J. Dai, C. Danumah, F. Tosto, A. Demesa, and D. Bressler (2018) Characterization of cellulase–treated fibers and resulting cellulose nanocrystals generated through acid hydrolysis. Materials 11: 1272.CrossRefGoogle Scholar
  31. 31.
    Heshmati, V., M. R. Kamal, and B. D. Favis (2018) Cellulose nanocrystal in poly(lactic acid)/polyamide11 blends: Preparation, morphology and co–continuity. Eur. Polym. J. 98: 11–20.CrossRefGoogle Scholar
  32. 32.
    Kim, E. H., S. Lim, T. E. Kim, I. O. Jeon, and Y. S. Choi (2018) Preparation of in situ injectable chitosan/gelatin hydrogel using an acid–tolerant tyrosinase. Biotechnol. Bioprocess Eng. 23: 500–506.CrossRefGoogle Scholar
  33. 33.
    Park, J. C., D. H. Kim, C. S. Kim, and J. H. Seo (2018) R5 peptide–based biosilicification using methyltrimethoxysilane. Biotechnol. Bioprocess Eng. 23: 11–15.CrossRefGoogle Scholar
  34. 34.
    Arredondo, M., M. Stoytcheva, I. Morales–Reyes, and N. Batina (2018) AFM and MFM techniques for enzyme activity imaging and quantification. Biotechnol. Biotechnol. Equip. 1–10.Google Scholar
  35. 35.
    Fahlén, J. and L. Salmén (2005) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6: 433–438.CrossRefGoogle Scholar
  36. 36.
    Perera, P. N., M. Schmidt, P. J. Schuck, and P. D. Adams (2011) Blind image analysis for the compositional and structural characterization of plant cell walls. Anal. Chim. Acta 702: 172–177.CrossRefGoogle Scholar
  37. 37.
    Raman, B., A. Cheung, and M. R. Marten (2002) Quantitative comparison and evaluation of two commercially available, twodimensional electrophoresis image analysis software packages, Z3 and Melanie. Electrophoresis 23: 2194–2202.CrossRefGoogle Scholar
  38. 38.
    Wiesmann, V., D. Franz, C. Held, C. Münzenmayer, R. Palmisano, and T. Wittenberg (2015) Review of free software tools for image analysis of fluorescence cell micrographs. J. Microsc. 257: 39–53.CrossRefGoogle Scholar
  39. 39.
    Schindelin, J., I. Arganda–Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.–Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona (2012) Fiji: an open–source platform for biological–image analysis. Nat. Methods 9: 676.CrossRefGoogle Scholar
  40. 40.
    Lamprecht, M. R., D. M. Sabatini, and A. E. Carpenter (2007) CellProfiler™: free, versatile software for automated biological image analysis. Biotechniques 42: 71–75.CrossRefGoogle Scholar
  41. 41.
    Schneider, C. A., W. S. Rasband, and K. W. Eliceiri (2012) NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671.CrossRefGoogle Scholar
  42. 42.
    Bradley, D. and G. Roth (2007) Adaptive thresholding using the integral image. J. Graphics Tools. 12: 13–21.CrossRefGoogle Scholar
  43. 43.
    Otsu, N. (1979) A threshold selection method from gray–level histograms. IEEE Trans. Syst. Man. Cybern. Syst. 9: 62–66.CrossRefGoogle Scholar
  44. 44.
    Sternberg (1983) Biomedical image processing. Computer. 16: 22–34.CrossRefGoogle Scholar
  45. 45.
    O’Shea, D. G. and P. K. Walsh (1996) Morphological characterization of the dimorphic yeast Kluyveromyces marxianus var. marxianus NRRLy2415 by semi–automated image analysis. Biotechnol. Bioeng. 51: 679–690.CrossRefGoogle Scholar
  46. 46.
    Yehliu, K., R. L. Vander Wal, and A. L. Boehman (2011) Development of an HRTEM image analysis method to quantify carbon nanostructure. Combust. Flame 158: 1837–1851.CrossRefGoogle Scholar
  47. 47.
    D’Amore, A., J. A. Stella, W. R. Wagner, and M. S. Sacks (2010) Characterization of the complete fiber network topology of planar fibrous tissues and scaffolds. Biomaterials 31: 5345–5354.CrossRefGoogle Scholar
  48. 48.
    Higaki, T., N. Kutsuna, T. Sano, N. Kondo, and S. Hasezawa (2010) Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J. 61: 156–165.CrossRefGoogle Scholar
  49. 49.
    Sacco, P., F. Brun, I. Donati, D. Porrelli, S. Paoletti, and G. Turco (2018) On the correlation between the microscopic structure and properties of phosphate–cross–linked chitosan gels. ACS Appl. Mater. Inter. 10: 10761–10770.CrossRefGoogle Scholar
  50. 50.
    Wollmann, T., H. Erfle, R. Eils, K. Rohr, and M. Gunkel (2017) Workflows for microscopy image analysis and cellular phenotyping. J. Biotechnol. 261: 70–75.CrossRefGoogle Scholar
  51. 51.
    van Oeffelen, L., E. Peeters, P. Nguyen Le Minh, and D. Charlier (2014) The ‘densitometric image analysis software’ and its application to determine stepwise equilibrium constants from electrophoretic mobility shift assays. PLoS One 9: e85146.CrossRefGoogle Scholar
  52. 52.
    Miyanaga, K., M. Seki, and S. Furusaki (2000) Quantitative determination of cultured strawberry–cell heterogeneity by image analysis: effects of medium modification on anthocyanin accumulation. Biochem. Eng. J. 5: 201–207.CrossRefGoogle Scholar
  53. 53.
    Srisa–Art, M., K. E. Boehle, B. J. Geiss, and C. S. Henry (2018) Highly sensitive detection of Salmonella typhimurium using a colorimetric paper–based analytical device coupled with immunomagnetic separation. Anal. Chem. 90: 1035–1043.CrossRefGoogle Scholar
  54. 54.
    Gul, I., A. Hussain, A. Sami, Z. Ahmad, S. Naqvi, N. Ilyas, and M. Ahmad (2017) Detection of phenolic compounds by colorimetric bioassay using crude polyphenol oxidase. Nucleus 54: 105–113.Google Scholar
  55. 55.
    Encarnação, T., C. T. Arranja, T. F. G. G. Cova, A. A. C. C. Pais, M. G. Campos, A. J. F. N. Sobral, and H. D. Burrows (2018) Monitoring oil production for biobased feedstock in the microalga Nannochloropsis sp.: a novel method combining the BODIPY BD–C12 fluorescent probe and simple image processing. J. Appl. Phycol.Google Scholar
  56. 56.
    Giles, C. D., L. Dupuy, G. Boitt, L. K. Brown, L. M. Condron, T. Darch, M. S. A. Blackwell, D. Menezes–Blackburn, C. A. Shand, M. I. Stutter, D. G. Lumsdon, R. Wendler, P. Cooper, C. Wearing, H. Zhang, P. M. Haygarth, and T. S. George (2018) Root development impacts on the distribution of phosphatase activity: Improvements in quantification using soil zymography. Soil Biol. Biochem. 116: 158–166.CrossRefGoogle Scholar
  57. 57.
    Vrba, J., M. Macholdová, L. Nedbalová, J. Nedoma, and M. Šorf (2018) An experimental insight into extracellular phosphatases–Differential induction of cell–specific activity in green algae cultured under various phosphorus conditions. Front. Microbiol. 9.CrossRefGoogle Scholar
  58. 58.
    Kino–oka, M. and J. E. Prenosil (2000) Development of an online monitoring system of human keratinocyte growth by image analysis and its application to bioreactor culture. Biotechnol. Bioeng. 67: 234–239.CrossRefGoogle Scholar
  59. 59.
    Jung, S.–K. and S. B. Lee (2003) Image analysis of light distribution in a photobioreactor. Biotechnol. Bioeng. 84: 394–397.CrossRefGoogle Scholar
  60. 60.
    Jung, S.–K. and S. B. Lee (2006) In situ monitoring of cell concentration in a photobioreactor using image analysis: Comparison of uniform light distribution model and artificial neural networks. Biotechnol. Prog. 22: 1443–1450.CrossRefGoogle Scholar
  61. 61.
    Appels, L., J. Baeyens, J. Degrève, and R. Dewil (2008) Principles and potential of the anaerobic digestion of wasteactivated sludge. Prog. Energy Combust. Sci. 34: 755–781.CrossRefGoogle Scholar
  62. 62.
    Costa, J. C., D. P. Mesquita, A. L. Amaral, M. M. Alves, and E. C. Ferreira (2013) Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment: a review. Environ. Sci. Pollut. Res. 20: 5887–5912.CrossRefGoogle Scholar
  63. 63.
    Perez, Y., S. Leite, and M. Coelho (2006) Activated sludge morphology characterization through an image analysis procedure. Braz. J. Chem. Eng. 23: 319–330.CrossRefGoogle Scholar
  64. 64.
    Banadda, E. N., I. Y. Smets, R. Jenné, and J. F. Van Impe (2005) Predicting the onset of filamentous bulking in biological wastewater treatment systems by exploiting image analysis information. Bioprocess Biosyst. Eng. 27: 339–348.CrossRefGoogle Scholar
  65. 65.
    Mesquita, D., O. Dias, A. Amaral, and E. Ferreira (2009) Monitoring of activated sludge settling ability through image analysis: validation on full–scale wastewater treatment plants. Bioprocess Biosyst. Eng. 32: 361–367.CrossRefGoogle Scholar
  66. 66.
    Mesquita, D., A. Amaral, and E. Ferreira (2011) Identifying different types of bulking in an activated sludge system through quantitative image analysis. Chemosphere 85: 643–652.CrossRefGoogle Scholar
  67. 67.
    Grijspeerdt, K. and W. Verstraete (1997) Image analysis to estimate the settleability and concentration of activated sludge. Water Res. 31: 1126–1134.CrossRefGoogle Scholar
  68. 68.
    Contreras, E. M., L. Giannuzzi, and N. E. Zaritzky (2004) Use of image analysis in the study of competition between filamentous and non–filamentous bacteria. Water Res. 38: 2621–2630.CrossRefGoogle Scholar
  69. 69.
    Kumar, A., A. Gautam, and D. Dutt (2016) Biotechnological transformation of lignocellulosic biomass in to industrial products: An overview. Adv. Biosci. Biotechnol. 7: 20.Google Scholar
  70. 70.
    Vaezi, M., V. Pandey, A. Kumar, and S. Bhattacharyya (2013) Lignocellulosic biomass particle shape and size distribution analysis using digital image processing for pipeline hydrotransportation. Biosyst. Eng. 114: 97–112.CrossRefGoogle Scholar
  71. 71.
    Santos, R. B., J. M. Lee, H. Jameel, H.–M. Chang, and L. A. Lucia (2012) Effects of hardwood structural and chemical characteristics on enzymatic hydrolysis for biofuel production. Bioresour. Technol. 110: 232–238.CrossRefGoogle Scholar
  72. 72.
    Ichikawa, S., A. Nishida, S. Yasui, and S. Karita (2017) Characterization of lignocellulose particles during lignocellulose solubilization by Clostridium thermocellum. Biosci. Biotechnol. Biochem. 81: 2028–2033.CrossRefGoogle Scholar
  73. 73.
    Feng, X., C. Yu, Z. Shu, X. Liu, W. Yan, Q. Zheng, K. Sheng, and Y. He (2018) Rapid and non–destructive measurement of biofuel pellet quality indices based on two–dimensional near infrared spectroscopic imaging. Fuel 228: 197–205.CrossRefGoogle Scholar
  74. 74.
    Ciesielski, P. N., M. F. Crowley, M. R. Nimlos, A. W. Sanders, G. M. Wiggins, D. Robichaud, B. S. Donohoe, and T. D. Foust (2014) Biomass particle models with realistic morphology and resolved microstructure for simulations of intraparticle transport phenomena. Energy Fuels 29: 242–254.CrossRefGoogle Scholar
  75. 75.
    Danish, M., T. Ahmad, R. Hashim, N. Said, M. N. Akhtar, J. Mohamad–Saleh, and O. Sulaiman (2018) Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye. Surf. Interfaces 11: 1–13.CrossRefGoogle Scholar
  76. 76.
    Pinto, R., A. L. Amaral, J. Carvalho, E. C. Ferreira, M. Mota, and M. Gama (2007) Development of a method using image analysis for the measurement of cellulose–binding domains adsorbed onto cellulose fibers. Biotechnol. Prog. 23: 1492–1497.CrossRefGoogle Scholar
  77. 77.
    Devaux, M.–F., F. Jamme, W. André, B. Bouchet, C. Alvarado, S. Durand, P. Robert, L. Saulnier, E. Bonnin, and F. Guillon (2018) Synchrotron time–lapse imaging of lignocellulosic biomass hydrolysis: Tracking enzyme localization by protein autofluorescence and biochemical modification of cell walls by microfluidic infrared microspectroscopy. Front. Plant Sci. 9.Google Scholar
  78. 78.
    Lu, H., E. Ip, J. Scott, P. Foster, M. Vickers, and L. L. Baxter (2010) Effects of particle shape and size on devolatilization of biomass particle. Fuel 89: 1156–1168.CrossRefGoogle Scholar
  79. 79.
    Haas, T. J., M. R. Nimlos, and B. S. Donohoe (2009) Real–time and post–reaction microscopic structural analysis of biomass undergoing pyrolysis. Energy Fuels 23: 3810–3817.CrossRefGoogle Scholar
  80. 80.
    Thompson, L. C., P. N. Ciesielski, M. W. Jarvis, C. Mukarakate, M. R. Nimlos, and B. S. Donohoe (2017) Estimating the temperature experienced by biomass particles during fast pyrolysis using microscopic analysis of biochars. Energy Fuels 31: 8193–8201.CrossRefGoogle Scholar
  81. 81.
    Zhang, R., C. Y. Ma, J. J. Liu, and X. Z. Wang (2015) On–line measurement of the real size and shape of crystals in stirred tank crystalliser using non–invasive stereo vision imaging. Chem. Eng. Sci. 137: 9–21.CrossRefGoogle Scholar
  82. 82.
    Bern, M., D. Goldberg, R. C. Stevens, and P. Kuhn (2004) Automatic classification of protein crystallization images using a curve–tracking algorithm. J. Appl. Crystallogr. 37: 279–287.CrossRefGoogle Scholar
  83. 83.
    Cumbaa, C. A., A. Lauricella, N. Fehrman, C. Veatch, R. Collins, J. Luft, G. DeTitta, and I. Jurisica (2003) Automatic classification of sub–microlitre protein–crystallization trials in 1536–well plates. Acta Crystallogr. D 59: 1619–1627.CrossRefGoogle Scholar
  84. 84.
    Lu, Z. M., F. C. Zhu, X. Y. Gao, B. C. Chen, and Z. G. Gao (2018) In–situ particle segmentation approach based on average background modeling and graph–cut for the monitoring of l–glutamic acid crystallization. Chemometr. Intell. Lab. Syst. 178: 11–23.CrossRefGoogle Scholar
  85. 85.
    Mehle, A., D. Kitak, G. Podrekar, B. Likar, and D. Tomaževič (2018) In–line agglomeration degree estimation in fluidized bed pellet coating processes using visual imaging. Int. J. Pharm.Google Scholar
  86. 86.
    Pan, S., G. Shavit, M. Penas–Centeno, D.–H. Xu, L. Shapiro, R. Ladner, E. Riskin, W. Hol, and D. Meldrum (2006) Automated classification of protein crystallization images using support vector machines with scale–invariant texture and Gabor features. Acta Crystallogr. D 62: 271–279.CrossRefGoogle Scholar
  87. 87.
    Calderon De Anda, J., X. Z. Wang, and K. J. Roberts (2005) Multi–scale segmentation image analysis for the in–process monitoring of particle shape with batch crystallisers. Chem. Eng. Sci. 60: 1053–1065.CrossRefGoogle Scholar
  88. 88.
    Spraggon, G., S. A. Lesley, A. Kreusch, and J. P. Priestle (2002) Computational analysis of crystallization trials. Acta Crystallogr. D 58: 1915–1923.CrossRefGoogle Scholar
  89. 89.
    Cumbaa, C. and I. Jurisica (2005) Automatic classification and pattern discovery in high–throughput protein crystallization trials. J. Struct. Funct. Genomics 6: 195–202.CrossRefGoogle Scholar
  90. 90.
    Wilson, J. (2002) Towards the automated evaluation of crystallization trials. Acta Crystallogr. D 58: 1907–1914.CrossRefGoogle Scholar
  91. 91.
    Xiaoqing, Z., S. Shaohua, and M. Bern (2004) Classification of protein crystallization imagery. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1–5 Sept. 2004.Google Scholar
  92. 92.
    Cumbaa, C. A. and I. Jurisica (2010) Protein crystallization analysis on the World Community Grid. J. Struct. Funct. Genomics 11: 61–69.CrossRefGoogle Scholar
  93. 93.
    Calderon, C. P., A. L. Daniels, and T. W. Randolph (2017) Using deep convolutional neural networks to circumvent morphological feature specification when classifying subvisible protein aggregates from micro–flow images. arXiv preprint arXiv:1709.00152.Google Scholar
  94. 94.
    Wenzel, S. E. (2006) Asthma: defining of the persistent adult phenotypes. Lancet 368: 804–813.CrossRefGoogle Scholar
  95. 95.
    Cheng, K. C., S. R. Katz, A. Y. Lin, X. Xin, and Y. Ding (2016) Chapter Four–Whole–organism cellular pathology: A systems approach to phenomics. pp. 89–115. In: N.S. Foulkes (ed.). Adv. Genet. Academic Press.Google Scholar
  96. 96.
    Swierczek, N. A., A. C. Giles, C. H. Rankin, and R. A. Kerr (2011) High–throughput behavioral analysis in C. elegans. Nat. Methods 8: 592–598.CrossRefGoogle Scholar
  97. 97.
    Feng, Z., C. Cronin, J. Wittig, P. Sternberg, and W. Schafer (2004) An imaging system for standardized quantitative analysis of C. elegans behavior. BMC Bioinformatics 5: 115.CrossRefGoogle Scholar
  98. 98.
    Ramot, D., B. E. Johnson, T. L. Berry, L. Carnell, and M. B. Goodman (2008) The Parallel Worm Tracker: A platform for measuring average speed and drug–induced paralysis in nematodes. PLoS One 3: e2208.CrossRefGoogle Scholar
  99. 99.
    Vogt, A., A. Cholewinski, X. Shen, S. G. Nelson, J. S. Lazo, M. Tsang, and N. A. Hukriede (2009) Automated image–based phenotypic analysis in zebrafish embryos. Dev. Dyn. 238: 656–663.CrossRefGoogle Scholar
  100. 100.
    Creton, R. (2009) Automated analysis of behavior in zebrafish larvae. Behav. Brain Res. 203: 127–136.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological and Chemical EngineeringHongik UniversitySejongKorea

Personalised recommendations