Advertisement

Design, Synthesis, and Evaluation of Gold Nanoparticle-Antibody-Horseradish Peroxidase Conjugates for Highly Sensitive Chemiluminescence Immunoassay (hs-CLIA)

  • Gyeo-Re Han
  • Min-Gon KimEmail author
Research Paper
  • 4 Downloads

Abstract

Design and synthesis of a conjugate with high specificity and sensitivity constitutes a fundamental process for developing a highly sensitive immunoassay. In this study, we investigated the process of design, synthesis, and evaluation of gold nanoparticle (AuNP) conjugates that include both antibody and horseradish peroxidase (HRP) for application in a highly sensitive chemiluminescence immunoassay (hs-CLIA). To increase the labeling efficiency of HRP on the AuNP-based conjugates while maintaining process simplicity, two synthesis methods were suggested and evaluated using the physical adsorption-based conventional synthesis protocol. Specifically, the respective methods utilized adsorption or covalent coupling of aldehyde-activated (ald)HRP, which covalently binds to the primary amine group of a protein. The conjugates were characterized via spectroscopy and dynamic light scattering methods. Conjugate sensitivity was evaluated by not only analyzing the activity of HRP but also comparing the analytical sensitivity provided by the CL-based enzyme-linked immunosorbent assay for the detection of cardiac troponin I as a model target. Based on the results of this study, we demonstrated that the use of (ald)HRP for target labeling successfully enhanced the sensitivity of the AuNP-based conjugates; moreover, it could provide a promising labeling method for hs-CLIA.

Keywords

aldehyde activated HRP gold nanoparticle conjugate chemiluminescence immunoassay (CLIA) cardiac troponin I (cTnI) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12257_2018_369_MOESM1_ESM.pdf (397 kb)
Supplementary material, approximately 398 KB.

References

  1. 1.
    Dodeigne, C., L. Thunus, and R. Lejeune (2000) Chemiluminescence as a diagnostic tool. A review. Talanta 51: 415–439.CrossRefGoogle Scholar
  2. 2.
    Zhao, L., L. Sun, and X. Chu (2009) Chemiluminescence immunoassay. TrAC Trends Anal. Chem. 28: 404–415.CrossRefGoogle Scholar
  3. 3.
    Wang, C., J. Wu, C. Zong, J. Xu, and H.-X. Ju (2012) Chemiluminescent immunoassay and its applications. Chin. J. Anal. Chem. 40: 3–10.CrossRefGoogle Scholar
  4. 4.
    Wisdom, G. B. (1988) Antibody-enzyme conjugate formation. Methods Mol. Biol. 3: 373–382.Google Scholar
  5. 5.
    Winston, S. E., S. A. Fuller, M. J. Evelegh, and J. G. Hurrell (2000) Conjugation of enzymes to antibodies. Curr. Protoc. Mol. Biol. 50: 11.1.1-11.1.7.Google Scholar
  6. 6.
    Zhang, Z.-F., H. Cui, C.-Z. Lai, and L.-J. Liu (2005) Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal. Chem. 77: 3324–3329.CrossRefGoogle Scholar
  7. 7.
    Yang, X., Y. Guo, and A. Wang (2010) Luminol/antibody labeled gold nanoparticles for chemiluminescence immunoassay of carcinoembryonic antigen. Anal. Chim. Acta 666: 91–96.CrossRefGoogle Scholar
  8. 8.
    Kim, M. I., M. S. Kim, M. A. Woo, Y. Ye, K. S. Kang, J. Lee, and H. G. Park (2014) Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide-magnetic-platinum nanohybrids. Nanoscale 6: 1529–1536.CrossRefGoogle Scholar
  9. 9.
    Kim, M. I., Y. Ye, M. A. Woo, J. Lee, and H. G. Park (2014) A highly efficient colorimetric immunoassay using a nanocomposite entrapping magnetic and platinum nanoparticles in ordered mesoporous carbon. Adv. Healthc. Mater. 3: 36–41.CrossRefGoogle Scholar
  10. 10.
    Kim, M. S., S. H. Kweon, S. Cho, S. S. A. An, M. I. Kim, J. Doh, and J. Lee (2017) Pt-decorated magnetic nanozymes for facile and sensitive point-of-care bioassay. ACS Appl. Mater. Interfaces 9: 35133–35140.CrossRefGoogle Scholar
  11. 11.
    Li, N., D. Liu, and H. Cui (2014) Metal-nanoparticle-involved chemiluminescence and its applications in bioassays. Anal. Bioanal. Chem. 406: 5561–5571.CrossRefGoogle Scholar
  12. 12.
    Chen, L., Z. Zhang, X. Zhang, A. Fu, P. Xue, and R. Yan (2012) A novel chemiluminescence immunoassay of staphylococcal enterotoxin B using HRP-functionalised mesoporous silica nanoparticle as label. Food Chem. 135: 208–212.CrossRefGoogle Scholar
  13. 13.
    Kim, S. and H. B. Lim (2015) Chemiluminescence immunoassay using magnetic nanoparticles with targeted inhibition for the determination of ochratoxin A. Talanta 140: 183–188.CrossRefGoogle Scholar
  14. 14.
    Lee, J. S., H. A. Joung, M. G. Kim, and C. B. Park (2012) Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay. ACS Nano 6: 2978–2983.CrossRefGoogle Scholar
  15. 15.
    Bi, S., H. Zhou, and S. Zhang (2009) Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. Biosens. Bioelectron. 24: 2961–2966.CrossRefGoogle Scholar
  16. 16.
    Li, W., S. Ge, S. Wang, M. Yan, L. Ge, and J. Yu (2013) Highly sensitive chemiluminescence immunoassay on chitosan membrane modified paper platform using TiO2 nanoparticles/multiwalled carbon nanotubes as label. Luminescence 28: 496–502.CrossRefGoogle Scholar
  17. 17.
    Liu, Q., M. Han, J. Bao, X. Jiang, and Z. Dai (2011) CdSe quantum dots as labels for sensitive immunoassay of cancer biomarker proteins by electrogenerated chemiluminescence. Analyst 136: 5197–5203.CrossRefGoogle Scholar
  18. 18.
    Holzinger, M., A. Le Goff, and S. Cosnier (2014) Nanomaterials for biosensing applications: a review. Front. Chem. 2: 63.CrossRefGoogle Scholar
  19. 19.
    Wang, A., Y. R. Perera, M. B. Davidson, and N. C. Fitzkee (2016) Electrostatic interactions and protein competition reveal a dynamic surface in gold nanoparticle–protein adsorption. J. Phys. Chem. C Nanomater. Interfaces. 120: 24231–24239.CrossRefGoogle Scholar
  20. 20.
    Ciaurriz, P., F. Fernández, E. Tellechea, J. F. Moran, and A. C. Asensio (2017) Comparison of four functionalization methods of gold nanoparticles for enhancing the enzyme-linked immunosorbent assay (ELISA). Beilstein J. Nanotechnol. 8: 244–253.CrossRefGoogle Scholar
  21. 21.
    Cui, R., H. Huang, Z. Yin, D. Gao, and J.-J. Zhu (2008) Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosens. Bioelectron. 23: 1666–1673.CrossRefGoogle Scholar
  22. 22.
    Zhang, Z., Y. Liu, C. Zhang, and W. Luan (2015) Horseradish peroxidase and antibody labeled gold nanoparticle probe for amplified immunoassay of ciguatoxin in fish samples based on capillary electrophoresis with electrochemical detection. Toxicon 96: 89–95.CrossRefGoogle Scholar
  23. 23.
    Tavanti, F., A. Pedone, and M. C. Menziani (2015) Competitive binding of proteins to gold nanoparticles disclosed by molecular dynamics simulations. J. Phys. Chem. C. 119: 22172–22180.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, School of Physics and ChemistryGwangju Institute of Science and Technology (GIST)GwangjuKorea

Personalised recommendations