Advertisement

Biotechnology and Bioprocess Engineering

, Volume 23, Issue 6, pp 627–633 | Cite as

Characterization of Amphiphilic Elastin-like Polypeptide (ELP) Block Copolymers as Drug Delivery Carriers

  • Jang-Won RoEmail author
  • Heelak Choi
  • Tae-Young Heo
  • Soo-Hyung Choi
  • Jong-In Won
Research Paper
  • 14 Downloads

Abstract

Elastin-like polypeptides (ELPs) are stimulusresponsive protein-based biopolymers that exhibit phase transition behavior. Some ELP block copolymers can assemble spherical nanoparticles with thermo-sensitivity. For this reason, thermo-responsive nanoparticles derived from ELP block copolymers have been utilized in the biomedical field. In this study, four different ELP block copolymers constituted three diblocks and one triblock were synthesized. Physical properties of these self-assembled micelles were then investigated according to their block lengths and distributions. In addition, drug capturing capacities of these micelles and aggregates were explored by changing solution temperature.

Keywords

elastin-like polypeptide (ELP) block copolymers thermo-responsive drug carrier micelle drug-delivery system (DDS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Write, E. R. and V. P. Conticello (2002) Self–assembly of block copolymers derived from elastin–mimetic polypeptide sequence. Advanced Drug Delivery Reviews 54: 1057–1073.CrossRefGoogle Scholar
  2. 2.
    Rodriguez–Cabello, J. C., F. J. Arias, M. A. Rodrigo, and A. Girotti (2016) Elastin–like polypeptides in drug delivery. Advanced Drug Delivery Reviews 97: 85–100.CrossRefGoogle Scholar
  3. 3.
    MacEwan, S. R. and A. Chilkoti (2014) Applications of elastinlike polypeptides in drug delivery. Journal of Controlled Release 190: 314–330.CrossRefGoogle Scholar
  4. 4.
    Betre, H., S. R. Ong, F. Guilak, A. Chilkoti, B. Fermor, and L. A. Setton (2006) Chondrocytic differentiation of human adiposederived adult stem cells in elastin–like polypeptide. Biomaterials 27: 91–99.CrossRefGoogle Scholar
  5. 5.
    Nettles, D. L., M. A. Haider, A. Chilkoti, and L. A. Setton (2010) Neural network analysis identifies scaffold properties necessary for in vitro chondrogenesis in elastin–like polypeptide biopolymer scaffolds. Tissue Engineering Part A 16: 11–20.CrossRefGoogle Scholar
  6. 6.
    McDaniel, J. R., D. C. Radford, and A. Chilkoti (2013) A unified model for de novo design of elastin–like polypeptides with tunable inverse transition temperatures. Biomacromolecules 14: 2866–2872.CrossRefGoogle Scholar
  7. 7.
    Kim, W., J. Thevenot, E. Ibarboure, S. Lecommandoux, and E. L. Chaikof (2010) Self–assembly of thermally responsive amphiphilic diblock copolypeptides into spherical micellar nanoparticles. Angewandte Chemie 49: 4257–4260.CrossRefGoogle Scholar
  8. 8.
    Janib, S. M., M. F. Pastuszka, S. Aluri, Z. Folchman–Wagner, P. Y. Hsueh, P. Shi, Y. A. Lin, H. Cui, and J. A. MacKay (2014) A quantitative recipe for engineering protein polymer nanoparticles. Polymer Chemistry 5: 1614–1625.CrossRefGoogle Scholar
  9. 9.
    Lee, T. A. T., A. Cooper, R. P. Apkarian, and V. P. Conticello (2000) Thermo–reversible self–assembly of nanoparticles derived from elastin–mimetic polypeptides. Advanced Materials 12: 1105–1110.CrossRefGoogle Scholar
  10. 10.
    MacEwan, S. R., I. Weitzhandler, I. Hoffmann, J. Genzer, M. Gradzielski, and A. Chilkoti (2017) Phase behavior and selfassembly of perfectly sequence–defined and monodisperse multiblock copolypeptides. Biomacromolecules 18: 599–609.CrossRefGoogle Scholar
  11. 11.
    Chu, H.–S., K.–H. Lee, J.–E. Park, D.–M. Kim, B.–G. Kim, and J.–I. Won (2010) Expression analysis of an elastin–like polypeptide (ELP) in a cell–free protein synthesis system. Enzyme and Microbial Technology 46: 87–91.CrossRefGoogle Scholar
  12. 12.
    McDaniel, J. R., J. A, MacKay, F. G. Quiroz, and A Chilkoti (2010) Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes. Biomacromolecules 11: 944–952.CrossRefGoogle Scholar
  13. 13.
    Choi, H., H.–S. Chu, M. Chung, B. Kim, and J.–I. Won (2016) Synthesis and characterization of an ELP–conjugated liposome with thermos–sensitivity for controlled release of a drug. Biotechnol. Bioproc. Eng. 21: 620–626.CrossRefGoogle Scholar
  14. 14.
    Meyer, D. E. and A. Chilkoti (1999) Purification of recombinant proteins by fusion with thermally–responsive polypeptides. Nature Biotechnology 17: 1112–1115.CrossRefGoogle Scholar
  15. 15.
    Oh, K. T., Y. T. Oh, N.–M. Oh, K. Kim, K. H. Lee, and E. S. Lee (2009) A smart flower–like polymeric micelle for pH–triggered anticancer drug release. Int. J. Pharm. 375: 163–169.CrossRefGoogle Scholar
  16. 16.
    Meyer, D. E. and Ashutosh Chilkoti (2004) Quantification of the effects of chain length and concentration o the thermal behavior of elastin–like polypeptides. Biomacromolecules 5: 846–851.CrossRefGoogle Scholar
  17. 17.
    Mailer A. G., P. S. Clegg, and P. N. Pusey (2015) Particle sizing by dynamic light scattering: non–linear cumulant analysis. J. Phys.: Condens. Matter. 27: 145102.Google Scholar
  18. 18.
    Weitzhandler, I., M. Dzuricky, I. Hoffmann, F. G. Quiroz, M. Gradzielski, and A. Chilkoti (2017) Micellar self–assembly of recombinant resilin–/elastin–like block copolypeptides. Biomacromolcuels 18: 2419–2426.CrossRefGoogle Scholar
  19. 19.
    Yoon, D. Y. and J.–C. Kim (2017) Hydrogel composed of acrylic coumarin and acrylic pluronic F–127 and its photo–and thermosresponsive release property. Biotechnol. Bioproc. Eng. 22: 481–488.CrossRefGoogle Scholar
  20. 20.
    Hassouneh, W., E. B. Zhulina, A. Chilkoti, and M. Rubinstein (2015) Elastin–like polypeptide diblock copolymers self–assemble into weak micelles. Macromolecules 48: 4183–4195.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jang-Won Ro
    • 1
    Email author
  • Heelak Choi
    • 1
  • Tae-Young Heo
    • 1
  • Soo-Hyung Choi
    • 1
  • Jong-In Won
    • 1
  1. 1.Department of Chemical EngineeringHongik UniversitySeoulKorea

Personalised recommendations