Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 1, pp 250–257 | Cite as

Isolation of Novel Exo-type β-Agarase from Gilvimarinus chinensis and High-level Secretory Production in Corynebacterium glutamicum

  • Yong Jun Jeong
  • Jae Woong Choi
  • Min Soo Cho
  • Ki Jun JeongEmail author
Research Paper
  • 7 Downloads

Abstract

Agar, a major cell wall component in marine red macroalgae, has recently gained high interest as a potential renewable biomass. By the activity of β-agarase which cleaves the β-1,4-glycosidic bond, agarose can be hydrolyzed into neoagarobioses which have great potential in the cosmetics, food, and medical industries. Here, based on sequence homology analysis, we isolated a novel exotype β-agarase (EXB3) from Gilvimarinus chinensis which have putative glycoside hydrolase (GH) 50 domain. The optimum pH and temperature for the activity of EXB3 were pH 7.0 and 30°C, respectively. The Km and Vmax for agarose were 26 mg/mL and 126.8 U/mg, respectively, and the Kcat/Km value was 3.7 × 105 s-1M-1. Under the optimal condition (30°C and pH 7), it was clearly confirmed that neoagarobiose (NA2) was produced as a major product directly from agarose. For the large-scale production of EXB3, we also developed a secretory production platform in Corynebacterium glutamicum. During the fed-batch cultivation in 2 L-scale bioreactor, EXB3 was successfully produced in the culture medium as high as 458.3 mg/L, and EXB3 was purified from the culture supernatant with high purity and recovery yield (24%).

Keywords

β-agarase Gilvimarinus chinensis Corynebacterium glutamicum secretion fed-batch cultivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12257_2018_362_MOESM1_ESM.pdf (1.7 mb)
Supplementary material, approximately 1702 KB.

References

  1. 1.
    Oh, Y. R., K. A. Jung, H. J. Lee, G. Y. Jung, and J. M. Park (2018). A novel 3, 6-anhydro-l-galactose dehydrogenase produced by a newly isolated raoultella ornithinolytica b6-jmp12. Biotechnol. Bioproc. E.. 23: 64–71.CrossRefGoogle Scholar
  2. 2.
    Hong, S. J., J. H. Lee, E. J. Kim, H. J. Yang, Y. K. Chang, J. S. Park, and S. K. Hong (2017). In vitro and in vivo investigation for biological activities of neoagarooligosaccharides prepared by hydrolyzing agar with β-agarase. Biotechnol. Bioproc. E.. 22: 489–496.Google Scholar
  3. 3.
    Wang, W., P. Liu, C. Hao, L. Wu, W. Wan, and X. Mao (2017). Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-κB pathways. Sci. Rep.. 7: 44252.Google Scholar
  4. 4.
    Pereira, L. (2018). Biological and therapeutic properties of the seaweed polysaccharides. Int. Biol. Rev. 2.Google Scholar
  5. 5.
    Fu, X. T. and S. M. Kim (2010). Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs.. 8: 200–218.Google Scholar
  6. 6.
    Pluvinage, B., J. H. Hehemann, and A. B. Boraston (2013). Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans. J. Biol. Chem.. 288: 28078–28088.Google Scholar
  7. 7.
    Temuujin, U., W. J. Chi, S. Y. Lee, Y. K. Chang, and S. K. Hong (2011). Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3 (2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol.. 92: 749–759.Google Scholar
  8. 8.
    Giles, K., B. Pluvinage, and A. B. Boraston (2017). Structure of a glycoside hydrolase family 50 enzyme from a subfamily that is enriched in human gut microbiome bacteroidetes. Proteins. 85: 182–187.CrossRefGoogle Scholar
  9. 9.
    Temuujin, U., W. J. Chi, Y. K. Chang, and S. K. Hong (2012). Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3 (2), an exo-and endo-type β-agaraseproducing neoagarobiose. J. Bacteriol.. 194: 142–149.CrossRefGoogle Scholar
  10. 10.
    Baumgart, M., S. Unthan, R. Kloss, A. Radek, T. Polen, N. Tenhaef, M.F. Müller, A. Küberl, D. Siebert, N. Brühl, K. Marin, S. Hans, R. Krämer, M. Bott, J. Kalinowski, W. Wiechert, G. Seibold, J. Frunzke, C. Rückert, V.F. Wendisch, S. Noack (2017). Corynebacterium glutamicum Chassis C1*: building and testing a novel platform host for synthetic biology and industrial biotechnology. ACS Synth. Biol.. 7: 132–144.Google Scholar
  11. 11.
    Baritugo, K. A., H. T. Kim, Y. David, J. I. Choi, S. H. Hong, K. J. Jeong, J. H. Choi, J. C. Joo, and S. J. Park (2018) Metabolic engineering o. Corynebacterium glutamicum for fermentative production of chemicals in biorefineryAppl. MicrobiolBiotechnol.CrossRefGoogle Scholar
  12. 12.
    An, S. J., S. S. Yim, and K. J. Jeong (2013). Development of a secretion system for the production of heterologous proteins in Corynebacterium glutamicum using the Porin B signal peptide. Protein Expr. Purif.. 89: 251–257.CrossRefGoogle Scholar
  13. 13.
    Yim, S. S., S. J. An, J. W. Choi, A. J. Ryu, and K. J. Jeong (2014). High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol.. 98: 273–284.Google Scholar
  14. 14.
    Hermann T., W. Pfefferle, C. Baumann, E. Busker, S. Schaffer, M. Bott, H. Sahm, N. Dusch, J. Kalinowski, A. Pühler, A. K. Bendt, R. Krämer, A. Burkovski (2001). Proteome analysis of Corynebacterium glutamicum. Electrophoresis. 22: 1712–1723.CrossRefGoogle Scholar
  15. 15.
    Lee, J. Y., Y. A. Na, E. Kim, H. S. Lee, and P. Kim (2016) Th. Actinobacterium Corynebacterium glutamicum, an industrial workhorseCrossRefGoogle Scholar
  16. 16.
    Freudl, R. (2017) Beyond amino acids. Use of the Corynebacterium glutamicum cell factory for the secretion of heterologous proteinsJ. Biotechnol.CrossRefGoogle Scholar
  17. 17.
    Liu, X., W. Zhang, Z. Zhao, X. Dai, Y. Yang, and Z. Bai (2017) Protein secretion i. Corynebacterium glutamicumCrit. Rev. Biotechnol.CrossRefGoogle Scholar
  18. 18.
    Kikuchi, Y., H. Itaya, M. Date, K. Matsui, and L.-F. Wu (2009) TatABC overexpression improve. Corynebacterium glutamicum Tat-dependent protein secretion. Appl. Environ. Microbiol.. 75: 603–607CrossRefGoogle Scholar
  19. 19.
    Yim, S. S., J. W. Choi, R. J. Lee, Y. J. Lee, S. H. Lee, S. Y. Kim, and K. J. Jeong (2016). Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnol. Bioeng.. 113: 163–172.CrossRefGoogle Scholar
  20. 20.
    Kumar, S., K. Tamura, and M. Nei (1994). MEGA: molecular evolutionary genetics analysis software for microcomputers. Bioinformatics 10: 189–191.Google Scholar
  21. 21.
    Nielsen, H. (2017). Predicting secretory proteins with SignalP. Methods Mol. Biol. 1611: 59–73.Google Scholar
  22. 22.
    Kim, H. T., S. Lee, D. Lee, H. S. Kim, W. G. Bang, K. H. Kim, and I. G. Choi (2010). Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2–40: an exo-type β-agarase producing neoagarobiose. Appl. Microbiol. Biotechnol.. 86: 227–234.Google Scholar
  23. 23.
    Ye, R., J. H. Kim, B. G. Kim, S. Szarka, E. Sihota, and S. L. Wong (1999). High-level secretory production of intact, biologically active staphylokinase from Bacillus subtilis. Biotechnol. Bioeng.. 62: 87–96.CrossRefGoogle Scholar
  24. 24.
    Park, J., S. K. Hong, and Y. K. Chang (2014). Production of DagA, a β-agarase, by Streptomyces lividans in glucose medium or mixed-sugar medium simulating microalgae hydrolysate. J. Microbiol. Biotechnol.. 24: 1622–1628.Google Scholar
  25. 25.
    Fu, X. T., H. Lin, and S. M. Kim (2008). Purification and characterization of a novel β-agarase, AgaA34, from Agarivorans albus YKW-34. Appl. Microbiol. Biotechnol.. 78: 265–273.Google Scholar
  26. 26.
    Zhang, W. W. and L. Sun. (2007) Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Appl. Environ. Microbiol. 73: 2825–2831.CrossRefGoogle Scholar
  27. 27.
    Kim, J. D., D. G. Lee, and S. H. Lee (2018) Cloning, Expression, and Characterization of a Thermotolerant β-agarase from Simiduia sp. SH-4. Biotechnol. Bioproc. E. 23: 525–531.CrossRefGoogle Scholar
  28. 28.
    Li, G., M. Sun, J. Wu, M, Ye, X. Ge, W. Wei, H. Li, and F. Hu. (2015). Identification and biochemical characterization of a novel endo-type β-agarase AgaW from Cohnella sp. strain LGH. Appl. Microbiol. Biotechnol. 99: 10019–10029.Google Scholar
  29. 29.
    Allouch J., M. Jam, W. Helbert, T. Barbeyron, B. Kloareg, B. Henrissat, and M. Czjzek. (2003) The three-dimensional structures of two beta-agarases. J. Biol. Chem. 278: 47171–47180.CrossRefGoogle Scholar
  30. 30.
    Cui, X., Y. Jiang, L. Chang, L. Meng, J. Yu, C. Wang, and X. Jiang. (2018) Heterologous expression of an agarase gene in Bacillus subtilis, and characterization of the agarase. Int. J. Biol. Macromol. 120(Pt A): 657–664.Google Scholar
  31. 31.
    Yim, S. S., J. W. Choi, S. H. Lee, K. J. Jeong (2016) Modular Optimization of a hemicellulose-utilizing pathway in Corynebacterium glutamicum for consolidated bioprocessing of hemicellulosic biomass. ACS Synt. Biol. 5: 334–343.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Yong Jun Jeong
    • 1
  • Jae Woong Choi
    • 1
  • Min Soo Cho
  • Ki Jun Jeong
    • 2
    Email author
  1. 1.Department of Chemical and Biomolecular Engineering (BK Plus program)KAISTDaejeonKorea
  2. 2.Institute for the BioCenturyKAISTDaejeonKorea

Personalised recommendations