Advertisement

Biotechnology and Bioprocess Engineering

, Volume 23, Issue 5, pp 500–506 | Cite as

Preparation of in situ Injectable Chitosan/Gelatin Hydrogel Using an Acid-tolerant Tyrosinase

  • Eun Hae Kim
  • Sujin Lim
  • Tae Eun Kim
  • In Oh Jeon
  • Yoo Seong Choi
Research Paper

Abstract

An in situ injectable chitosan/gelatin hydrogel was formed under slightly acidic conditions (pH 4.0 ~ 4.5) using an acid-tolerant tyrosinase, tyrosinase-CNK. A homogeneous chitosan/tyrosinase-CNK solution was prepared in one part of a dual-barrel syringe, and highly soluble gelatin in distilled water was prepared in the other part of the syringe without any additional crosslinking materials. Chitosan/gelatin hydrogel was formed in situ by simple injection of the solutions at room temperature followed by curing at 37°C. However, conventional mushroom tyrosinase did not catalyze this permanent gel formation. Tyrosinase- CNK-catalyzed glycol chitosan/gelatin hydrogel was similarly formed by this in situ injection approach. The hydrogels exhibited a high swelling ratio of 20-fold their own weight, interconnected micropores with an average diameter of approximately 260 μm and in vitro biodegradability suitable for tissue engineering and drug delivery applications. These results showed that tyrosinase-CNK-mediated chitosan/gelatin hydrogel formation has remarkable potential for the development of novel formulations for in situ injectable gel-forming systems.

Keywords

chitosan gelatin hydrogel in situ injectable gel tyrosinase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Patterson, J., M. M. Martino, and J. A. Hubbell (2010) Biomimetic materials in tissue engineering. Mater. Today 13: 14–22.CrossRefGoogle Scholar
  2. 2.
    Liu, M., X. Zeng, C. Ma, H. Yi, Z. Ali, X. B. Mou, S. Li, Y. Deng, and N. Y. He (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 5: 17014.CrossRefGoogle Scholar
  3. 3.
    Yoon, D. Y. and J. C. Kim (2017) Hydrogel composed of acrylic coumarin and acrylic Pluronic F-127 and its photo- and thermoresponsive release property. Biotechnol. Bioproc. Eng. 22: 481–488.CrossRefGoogle Scholar
  4. 4.
    Karavasili, C. and D. G. Fatouros (2016) Smart materials: in situ gel-forming systems for nasal delivery. Drug Discov. Today 21: 157–166.CrossRefGoogle Scholar
  5. 5.
    Choi, Y. R., E. H. Kim, S. Lim, and Y. S. Choi (2018) Efficient preparation of a permanent chitosan/gelatin hydrogel using an acid-tolerant tyrosinase. Biochem. Eng. J. 129: 50–56.CrossRefGoogle Scholar
  6. 6.
    Periayah, M. H., A. S. Halim, and A. Z. Saad (2016) Chitosan: A promising marine polysaccharide for biomedical research. Pharmacogn. Rev. 10: 39–42.CrossRefGoogle Scholar
  7. 7.
    Kim, H. J., J. N. Jin, E. Kan, K. J. Kim, and S. H. Lee (2017) Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol. Bioproc. Eng. 22: 89–94.CrossRefGoogle Scholar
  8. 8.
    LogithKumar, R., A. KeshavNarayan, S. Dhivya, A. Chawla, S. Saravanan, and N. Selvamurugan (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 151: 172–188.CrossRefGoogle Scholar
  9. 9.
    Song, K. D., L. Y. Li, W. F. Li, Y. X. Zhu, Z. R. Jiao, M. Lim, M. Y. Fang, F. X. Shi, L. Wang, and T. Q. Liu (2015) Threedimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Mat. Sci. Eng. C-Mater. 55: 384–392.CrossRefGoogle Scholar
  10. 10.
    Su, K. and C. M. Wang (2015) Recent advances in the use of gelatin in biomedical research. Biotechnol. Lett. 37: 2139–2145.CrossRefGoogle Scholar
  11. 11.
    Kim, H., Y. J. Yeon, Y. R. Choi, W. Song, S. P. Pack, and Y. S. Choi (2016) A cold-adapted tyrosinase with an abnormally high monophenolase/diphenolase activity ratio originating from the marine archaeon Candidatus Nitrosopumilus koreensis. Biotechnol. Lett. 38: 1535–1542.CrossRefGoogle Scholar
  12. 12.
    Baker, M. I., S. P. Walsh, Z. Schwartz, B. D. Boyan (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications, J. Biomed. Mater. Res. Part B 100: 1451–1457.CrossRefGoogle Scholar
  13. 13.
    Kalra, A., A. Lowe, and A. M. Al-Jumaily (2016) Mechanical behavior of skin: a review, J. Mater. Sci. Eng. 5: 1000254.Google Scholar
  14. 14.
    Schneider, C. A., W. S. Rasband, and K. W. Eliceiri (2012) NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671–675.CrossRefGoogle Scholar
  15. 15.
    Chen, T. H., H. D. Embree, E. M. Brown, M. M. Taylor, and G. F. Payne (2003) Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24: 2831–2841.CrossRefGoogle Scholar
  16. 16.
    Do, H., E. Kang, B. Yang, H. J. Cha, and Y. S. Choi (2017) A tyrosinase, mTyr-CNK, that is functionally available as a monophenol monooxygenase. Sci. Rep. 7: 17267.CrossRefGoogle Scholar
  17. 17.
    Choi, Y. R., H. Do, D. Jeong, J. Park, Y. S. Choi (2016) Reaction stability of the recombinant tyorisinase-CNK originating from the psychrophilic marine microorganism Candidatus Nitrosopumilus Koreensis. Clean Tech. 22: 175–180.CrossRefGoogle Scholar
  18. 18.
    Hubbell, J. A. (1995) Biomaterials in tissue engineering. Biotechnology (NY) 13: 565–576.Google Scholar
  19. 19.
    Guo, L., R. H. Colby, C. P. Lusignan, and A. M. Howe (2003) Physical gelation of gelatin studied with rheo-optics. Macromolecules 36: 10009–10020.CrossRefGoogle Scholar
  20. 20.
    Alizadeh, M., F. Abbasi, A. B. Khoshfetrat, and H. Ghaleh (2013) Microstructure and characteristic properties of gelatin/ chitosan scaffold prepared by a combined freeze-drying/leaching method. Mat. Sci. Eng. C-Mater. 33: 3958–3967.CrossRefGoogle Scholar
  21. 21.
    Vlierberghe, S. V., V. Cnudde, P. Dubruel, B. Masschaele, A. Cosijns, I. D. Paepe, P. J. S. Jacobs, L. V. Hoorebeke, J. P. Remon, and E. Schacht (2007) Porous gelatin hydrogels: 1. Cryogenic formation and structure analysis. Biomacromolecules. 8: 331–337.CrossRefGoogle Scholar
  22. 22.
    Qiao, C., X. Cao, and F. Wang (2012) Swelling behavior study of physically crosslinked gelatin hydrogels. Polym. Polym. Compos. 20: 53–58.Google Scholar
  23. 23.
    Li, J. and F. Yao (2012) Environment-stimuli response of chitosan-based hydrogels. In: K. Yao, J. Li, F. Yao, Y. Yin (eds.). Chitosan-based hydrogels. CRC Press,6000 Broken Sound Parkway, NW, USA.Google Scholar
  24. 24.
    Shen, Z. S., X. Cui, R. X. Hou, Q. Li, H. X. Deng, and J. Fu (2015) Tough biodegradable chitosan-gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering. Rsc. Adv. 5: 55640–55647.CrossRefGoogle Scholar
  25. 25.
    Nieto-Suarez, M., M. A. Lopez-Quintela, and M. Lazzari (2016) Preparation and characterization of cross-linked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohyd. Polym. 141: 175–183.CrossRefGoogle Scholar
  26. 26.
    Gariboldi, M. I. and S. M. Best (2015) Effect of ceramic scaffold architectural parameters on biological response. Front Bioeng. Biotechnol. 3: 151.CrossRefGoogle Scholar
  27. 27.
    Saraiva, S. M., S. P. Miguel, M. P. Ribeiro, P. Coutinho, and I. J. Correia (2015) Synthesis and characterization of a photocrosslinkable chitosan-gelatin hydrogel aimed for tissue regeneration. Rsc. Adv. 5: 63478–63488.CrossRefGoogle Scholar
  28. 28.
    Yang, C., L. Xu, Y. Zhou, X. M. Zhang, X. Huang, M. Wang, Y. Han, M. L. Zhai, S. C. Wei, and J. Q. Li (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohyd. Polym. 82: 1297–1305.CrossRefGoogle Scholar
  29. 29.
    Correia, C. R., L. S. Moreira-Teixeira, L. Moroni, R. L. Reis, C. A. van Blitterswijk, M. Karperien, and J. F. Mano (2011) Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng. Part. C-Me 17: 717–730.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Eun Hae Kim
    • 1
  • Sujin Lim
    • 1
  • Tae Eun Kim
    • 1
  • In Oh Jeon
    • 1
  • Yoo Seong Choi
    • 1
  1. 1.Department of Chemical Engineering and Applied ChemistryChungnam National UniversityDaejeonKorea

Personalised recommendations