Advertisement

Engineering Escherichia coli to Sense Non-native Environmental Stimuli: Synthetic Chimera Two-component Systems

  • Irisappan Ganesh
  • Tae Wan Kim
  • Jeong-Geol Na
  • Gyeong Tae Eom
  • Soon Ho Hong
Review Paper
  • 20 Downloads

Abstract

The Two-component Regulatory System (TCS) is the primary mode that bacteria use to continuously sense the environment. A TCS is comprised of a periplasmic sensor Histidine kinase (HK) domain and a cytoplasmic Response regulator (RR) domain. The HK domain phosphorylates the RR domain to activate the effector gene expression. Utilizing a rational approach, the sensor HK was genetically engineered in Escherichia coli to create chimeric HK, by a rewiring or domain swapping strategy. Apart from the wild-type characteristics, chimeric HK imparts novel or the desired characteristics and ability to genetically engineered E. coli for its adaptation and survival. This review focuses on the design, potential applications, and future perspectives of chimeric HKs used as high throughput screening biosensors of various compounds.

Keywords

two-component regulatory system chimeric HK biosensor high-throughput screening domain swapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Park, Y. J., K. H. Lee, M. S. Baek, and D. M. Kim (2017) Highthroughput engineering of initial coding regions for maximized production of recombinant proteins. Biotechnol. Bioprocess Eng. 22: 497–503.CrossRefGoogle Scholar
  2. 2.
    Seo, J. H., S. W. Baek, J. Lee, and J. B. Park (2017) Engineering Escherichia coli BL21 genome to improve the heptanoic acid tolerance by using CRISPR–Cas9 system. Biotechnol. Bioprocess Eng. 22: 231–238.CrossRefGoogle Scholar
  3. 3.
    Lee, H. M., B. Y. Jeon, and M. K. Oh (2016) Microbial production of ethanol from acetate by engineered Ralstonia eutropha. Biotechnol. Bioprocess Eng. 21: 402–407.CrossRefGoogle Scholar
  4. 4.
    Chae, C. G., Y. J. Kim, S. J. Lee, Y. H. Oh, J. E. Yang, J. C. Joo, K. H. Kang, Y. A. Jang, H. Lee, A. R. Park, B. K. Song, S. Y. Lee, and S. J. Park (2016) Biosynthesis of poly(2–hydroxybutyrate–colactate) in metabolically engineered Escherichia coli. Biotechnol. Bioprocess Eng. 21: 169–174.CrossRefGoogle Scholar
  5. 5.
    Andrianantoandro, E., S. Basu, D. K. Karig, and R. Weiss (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2: 1–14.CrossRefGoogle Scholar
  6. 6.
    Pryciak, P. M. (2009) Designing new cellular signaling pathways. Chem. Biol. 16: 249–254.CrossRefGoogle Scholar
  7. 7.
    Laub, M. T. and M. Goulian (2007) Specificity in Two–Component Signal Transduction Pathways. Annu. Rev. Genet. 41: 121–145.CrossRefGoogle Scholar
  8. 8.
    Stock, A. M., V. L. Robinson, and P. N. Goudreau (2000) Twocomponent signal transduction. Annu. Rev. Biochem. 69: 183–215.CrossRefGoogle Scholar
  9. 9.
    Casino, P., V. Rubio, and A. Marina (2010) The mechanism of signal transduction by two–component systems. Curr. Opin. Struct. Biol. 20: 763–771.CrossRefGoogle Scholar
  10. 10.
    Wang, B., M. Barahona, M. Buck, and J. Schumacher (2013) Rewiring cell signalling through chimaeric regulatory protein engineering. Biochem. Soc. Trans. 41: 1195–1200.CrossRefGoogle Scholar
  11. 11.
    Forst, S., J. Delgado, and M. Inouye (1989) Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc. Natl. Acad. Sci. USA. 86: 6052–6056.CrossRefGoogle Scholar
  12. 12.
    Aiba, H., F. Nakasai, S. Mizushima, and T. Mizuno (1989) Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, results in stimulation of its DNA–binding ability. J. Biochem. 106: 5–7.CrossRefGoogle Scholar
  13. 13.
    Igo, M. M. and T. J. Silhavy (1988) EnvZ, a transmembrane environmental sensor of Escherichia coli K–12, is phosphorylated in vitro. J. Bacteriol. 170: 5971–5973.CrossRefGoogle Scholar
  14. 14.
    Forst, S., D. Comeau, S. Norioka, and M. Inouye (1987) Localization and membrane topology of EnvZ, a protein involved in osmoregulation of OmpF and OmpC in Escherichia coli. J. Biol. Chem. 262: 16433–16438.Google Scholar
  15. 15.
    Utsumi, R., R. E. Brissette, A. Rampersaud, S. A. Forst, K. Oosawa, and M. Inouye (1989) Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Scienc. 245: 1246–1249.CrossRefGoogle Scholar
  16. 16.
    Yang, Y., H. Park, and M. Inouye (1993) Ligand binding induces an asymmetrical transmembrane signal through a receptor dimer. J. Mol. Biol. 232: 493–498.CrossRefGoogle Scholar
  17. 17.
    Zhu, Y. and M. Inouye (2003) Analysis of the role of the EnvZ linker region in signal transduction using a chimeric Tar/EnvZ receptor protein, Tez1. J. Biol. Chem. 278: 22812–22819.CrossRefGoogle Scholar
  18. 18.
    Baumgartner, J. W., C. Kim, R. E. Brissette, M. Inouye, C. Park, and G. L. Hazelbauer (1994) Transmembrane signalling by a hybrid protein: communication from the domain of chemoreceptor Trg that recognizes sugar–binding proteins to the kinase/ phosphatase domain of osmosensor EnvZ. J. Bacteriol. 176: 1157–1163.CrossRefGoogle Scholar
  19. 19.
    Unden, G. and A. Kleefeld (2004) C4–dicarboxylate degradation in aerobic and anaerobic growth. p.pp. chapter 3.4.5. ASM Press, DC,USA.CrossRefGoogle Scholar
  20. 20.
    Ganesh, I., S. Ravikumar, S. H. Lee, S. J. Park, and S. H. Hong (2013) Engineered fumarate sensing Escherichia coli based on novel chimeric two–component system. J. Biotechnol. 168: 560–566.CrossRefGoogle Scholar
  21. 21.
    Forst, S. A. and D. L. Roberts (1994) Signal transduction by the EnvZ–OmpR phosphotransfer system in bacteria. Res. Microbiol. 145: 363–373.CrossRefGoogle Scholar
  22. 22.
    Aiba, H. and T. Mizuno (1990) Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, stimulates the transcription of the ompF and ompC genes in Escherichia coli. FEBS Lett. 261: 19–22.CrossRefGoogle Scholar
  23. 23.
    Golby, P., S. Davies, D. J. Kelly, J. R. Guest, and S. C. Andrews (1999) Identification and characterization of a two–component sensor–kinase and response–regulator system (DcuS–DcuR) controlling gene expression in response to C4–dicarboxylates in Escherichia coli. J. Bacteriol. 181: 1238–1248.Google Scholar
  24. 24.
    Alteri, C. J., S. D. Himpsl, M. D. Engstrom, and H. L. T. Mobley (2012) Anaerobic respiration using a complete oxidative TCA cycle drives multicellular swarming in proteus mirabilis. mBio. 3.Google Scholar
  25. 25.
    Zhang, X., X. Wang, K. T. Shanmugam, and L. O. Ingram (2011) L–malate production by metabolically engineered Escherichia coli. Appl. Environ. Microbiol. 77: 427–434.CrossRefGoogle Scholar
  26. 26.
    Bressler, E., O. Pines, I. Goldberg, and S. Braun (2002) Conversion of fumaric acid to L–malic by sol–gel immobilized Saccharomyces cerevisiae in a supported liquid membrane bioreactor. Biotechnol. Prog. 18: 445–450.CrossRefGoogle Scholar
  27. 27.
    Rosenberg, M., H. Mikova, and L. Kristofikova (1999) Formation of L–malic acid by yeasts of the genus Dipodascus. Lett. Appl. Microbiol. 29: 221–223.CrossRefGoogle Scholar
  28. 28.
    Ganesh, I., S. Ravikumar, I. K. Yoo, and S. H. Hong (2015) Construction of malate–sensing Escherichia coli by introduction of a novel chimeric two–component system. Bioprocess Biosyst. Eng. 38: 797–804.CrossRefGoogle Scholar
  29. 29.
    Levskaya, A., A. A. Chevalier, J. J. Tabor, Z. B. Simpson, L. A. Lavery, M. Levy, E. A. Davidson, A. Scouras, A. D. Ellington, E. M. Marcotte, and C. A. Voigt (2005) Synthetic biology: engineering Escherichia coli to see light. Natur. 438: 441–442.CrossRefGoogle Scholar
  30. 30.
    Sonawane, A. M., B. Singh, and K. H. Rohm (2006) The AauRAauS two–component system regulates uptake and metabolism of acidic amino acids in Pseudomonas putida. Appl. Environ. Microbiol. 72: 6569–6577.CrossRefGoogle Scholar
  31. 31.
    Ravikumar, S., I. Ganesh, M. K. Maruthamuthu, and S. H. Hong (2015) Engineering Escherichia coli to sense acidic amino acids by introduction of a chimeric two–component system. Korean J. Chem. Eng. 32: 2073–2077.CrossRefGoogle Scholar
  32. 32.
    Rabin, R. S. and V. Stewart (1993) Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate–and nitrite–regulated gene expression in Escherichia coli K–12. J. Bacteriol. 175: 3259–3268.CrossRefGoogle Scholar
  33. 33.
    Lehning, C. E., J. B. Heidelberger, J. Reinhard, M. H. H. Norholm, and R. R. Draheim (2017) A modular high–throughput in vivo screening platform based on chimeric bacterial receptors. ACS Synth. Biol. 6: 1315–1326.CrossRefGoogle Scholar
  34. 34.
    Nguyen, A. D., I. Y. Hwang, J. Y. Chan, and E. Y. Lee (2016) Reconstruction of methanol and formate metabolic pathway in non–native host for biosynthesis of chemicals and biofuels. Biotechnol. Bioprocess Eng. 21: 477–482.CrossRefGoogle Scholar
  35. 35.
    Xin, J. Y., J. R. Cui, J. Z. Niu, S. F. Hua, C. G. Xia, S. B. Li, and L. M. Zhu (2004) Production of methanol from methane by methanotrophic bacteria. Biocatal. Biotransfor. 22: 225–229.CrossRefGoogle Scholar
  36. 36.
    Schink, B. and J. G. Zeikus (1980) Microbial methanol formation: A major end product of pectin metabolism. Curr. Microbiol. 4: 387–389.CrossRefGoogle Scholar
  37. 37.
    Ganesh, I., S. Vidhya, G. T. Eom, and S. H. Hong (2017) Construction of methanol–sensing Escherichia coli by the introduction of a Paracoccus denitrificans MxaY–based chimeric two–component system. J. Microbiol. Biotechnol. 27: 1106–1111.Google Scholar
  38. 38.
    Brusstar MJ, H. D., Gray Jr CL.(2008) Environmental and human health considerations for methanol as a transportation fuel. Proceedings of the Presented at the 17th International Symposium on Alternative Fuels. 14 October. Taiyuan, China.Google Scholar
  39. 39.
    Harms, N., W. N. M. Reijnders, S. Koning, and R. J. M. van Spanning (2001) Two–component system that regulates methanol and formaldehyde oxidation in Paracoccus denitrificans. J. Bacteriol. 183: 664–670.CrossRefGoogle Scholar
  40. 40.
    Selvamani, V., I. Ganesh, M. K. Maruthamuthu, G. T. Eom, and S. H. Hong (2017) Engineering chimeric two–component system into Escherichia coli from Paracoccus denitrificans to sense methanol. Biotechnol Bioprocess Eng. 22: 225–230.CrossRefGoogle Scholar
  41. 41.
    Chistoserdova, L., S. W. Chen, A. Lapidus, and M. E. Lidstrom (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J. Bacteriol. 185: 2980–2987.CrossRefGoogle Scholar
  42. 42.
    Xu, H. H., J. J. Janka, M. Viebahn, and R. S. Hanson (1995) Nucleotide sequence of the mxcQ and mxcE genes, required for methanol dehydrogenase synthesis in Methylobacterium organophilum XX: a two–component regulatory system. Microbiol. 141: 2543–2551.CrossRefGoogle Scholar
  43. 43.
    Selvamani, V., M. K. Maruthamuthu, K. Arulsamy, G. T. Eom, and S. H. Hong (2017) Construction of methanol sensing Escherichia coli by the introduction of novel chimeric MxcQZ/OmpR twocomponent system from Methylobacterium organophilum XX.Korean J. Chem. Eng. 34: 1734–1739.Google Scholar
  44. 44.
    Yeh, K. C., S. H. Wu, J. T. Murphy, and J. C. Lagarias (1997) A cyanobacterial phytochrome two–component light sensory system. Scienc. 277: 1505–1508.CrossRefGoogle Scholar
  45. 45.
    Moglich, A., R. A. Ayers, and K. Moffat (2009) Structure and signaling mechanism of Per–ARNT–Sim domains. Structur. 17: 1282–1294.CrossRefGoogle Scholar
  46. 46.
    Moglich, A., R. A. Ayers, and K. Moffat (2009) Design and signaling mechanism of light–regulated histidine kinases. J. Mol. Biol. 385: 1433–1444.CrossRefGoogle Scholar
  47. 47.
    Sugie, Y., M. Hori, S. Oka, H. Ohtsuka, and H. Aiba (2016) Reconstruction of a chromatic response system in Escherichia coli. J. Gen. Appl. Microbiol. 62: 140–143.CrossRefGoogle Scholar
  48. 48.
    Hori, M., S. Oka, Y. Sugie, H. Ohtsuka, and H. Aiba (2017) Construction of a photo–responsive chimeric histidine kinase in Escherichia coli. J. Gen. Appl. Microbiol. 63: 44–50.CrossRefGoogle Scholar
  49. 49.
    Kefala, G., W. Kwiatkowski, L. Esquivies, I. Maslennikov, and S. Choe (2007) Application of Mistic to improving the expression and membrane integration of histidine kinase receptors from Escherichia coli. J. Struct. Funct. Genomics. 8: 167–172.CrossRefGoogle Scholar
  50. 50.
    Roosild, T. P., M. Vega, S. Castronovo, and S. Choe (2006) Characterization of the family of Mistic homologues. BMC Struct. Biol. 6: 10.CrossRefGoogle Scholar
  51. 51.
    Blain, K. Y., W. Kwiatkowski, and S. Choe (2010) The functionally active Mistic–fused histidine kinase receptor, EnvZ. Biochemistr. 49: 9089–9095.CrossRefGoogle Scholar
  52. 52.
    Radaev, S., Z. Zou, T. Huang, E. M. Lafer, A. P. Hinck, and P. D. Sun (2010) Ternary complex of transforming growth factor–ß1 reveals isoform–specific ligand recognition and receptor recruitment in the superfamily. J. Biol. Chem. 285: 14806–14814.CrossRefGoogle Scholar
  53. 53.
    Anantharaman, V., S. Balaji, and L. Aravind (2006) The signaling helix: a common functional theme in diverse signaling proteins. Biol. Direct. 1: 25.CrossRefGoogle Scholar
  54. 54.
    Kupferschmied, P., M. Pechy–Tarr, N. Imperiali, M. Maurhofer, and C. Keel (2014) Domain shuffling in a sensor protein contributed to the evolution of insect pathogenicity in plantbeneficial Pseudomonas protegens. PLoS Pathog. 10: e1003964.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Irisappan Ganesh
    • 1
    • 2
  • Tae Wan Kim
    • 3
  • Jeong-Geol Na
    • 4
  • Gyeong Tae Eom
    • 5
    • 6
  • Soon Ho Hong
    • 1
  1. 1.Department of Chemical EngineeringUniversity of UlsanUlsanKorea
  2. 2.Plant Systems Engineering Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
  3. 3.Department of Biotechnology & BioengineeringChonnam National UniversityGwangjuKorea
  4. 4.Chemical and Biomolecular Engineering DepartmentSogang UniversitySeoulKorea
  5. 5.Research Center for Bio-based ChemistryKorea Research Institute of Chemical Technology (KRICT)UlsanKorea
  6. 6.Department of Green Chemistry and Environmental BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea

Personalised recommendations