Advertisement

Effects of gltA and arcA Mutations on Biomass and 1,3-Propanediol Production in Klebsiella pneumoniae

  • Jung Hun Lee
  • Hwi-Min Jung
  • Moo-Young Jung
  • Min-Kyu OhEmail author
Research Paper
  • 57 Downloads

Abstract

We have previously engineered a Klebsiella pneumoniae strain to increase the 1,3-production (1,3-PDO) yield from glycerol. Here, we describe the further engineering of this strain to improve the biomass formation, resulting in an increase in the 1,3-PDO production. The amino acid lysine at the 167th position in citrate synthase was substituted with alanine using genome editing method to reduce the binding affinity of the enzyme to nicotinamide adenine dinucleotide (NADH). In addition, the arcA gene was deleted that resulted in the inhibition of the expression of citric acid cycle genes under limited aeration conditions. As a consequence, the biomass production was enhanced by 34% and 1,3-PDO formation was elevated from 9.58 to 16.71 g/L. The production of 1,3-PDO per dry cell weight enhanced by 30% from 2.40 to 3.11 g·L−1·DCW−1. The phenotypic changes in the strains were confirmed through the analyses of redox ratio, ATP levels, and changes in the expression of genes related to citric acid cycle and 1,3- PDO pathway.

Keywords

1,3-propanediol glycerol citrate synthase ArcA Klebsiella pneumoniae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, F. X., M. A. Hanna, and R. C. Sun (2012) Value–added uses for crude glycerol–a byproduct of biodiesel production. Biotechnol. Biofuel. 5: 13.CrossRefGoogle Scholar
  2. 2.
    Lee, C. S., M. K. Aroua, W. M. A. W. Daud, P. Cognet, Y. Peres–Lucchese, P. L. Fabre, O. Reynes, and L. Latapie (2015) A review: Conversion of bioglycerol into 1,3–propanediol via biological and chemical method. Renew. Sust. Energ. Rev. 42: 963–972.CrossRefGoogle Scholar
  3. 3.
    Biebl, H., K. Menzel, A. P. Zeng, and W. D. Deckwer (1999) Microbial production of 1,3–propanediol. Appl. Microbiol. Biotechnol. 52: 289–297.CrossRefGoogle Scholar
  4. 4.
    Anand, P., R. K. Saxena, and R. G. Marwah (2011) A novel downstream process for 1,3–propanediol from glycerol–based fermentation. Appl. Microbiol. Biotechnol. 90: 1267–1276.CrossRefGoogle Scholar
  5. 5.
    Saxena, R. K., P. Anand, S. Saran, and J. Isar (2009) Microbial production of 1,3–propanediol: Recent developments and emerging opportunities. Biotechnol. Adv. 27: 895–913.CrossRefGoogle Scholar
  6. 6.
    Jiang, W., S. Wang, Y. Wang, and B. Fang (2016) Key enzymes catalyzing glycerol to 1,3–propanediol. Biotechnol. Biofuel. 9: 57.CrossRefGoogle Scholar
  7. 7.
    Li, Z., S. M. Ro, B. S. Sekar, E. Seol, S. Lama, S. G. Lee, G. Wang, and S. Park (2016) Improvement of 1,3–propanediol oxidoreductase (DhaT) stability against 3–hydroxypropionaldehyde by substitution of cysteine residues. Biotechnol. Bioprocess Eng. 21: 695–703.CrossRefGoogle Scholar
  8. 8.
    Lama, S., S. M. Ro, E. Seol, B. S. Sekar, S. K. Ainala, J. Thangappan, H. Song, S. Seung, and S. Park (2015) Characterization of 1,3–propanediol oxidoreductase (DhaT) from Klebsiella pneumoniae J2B. Biotechnol. Bioprocess Eng. 20: 971–979.CrossRefGoogle Scholar
  9. 9.
    Oh, B. R., S. M. Lee, S. Y. Heo, J. W. Seo, and C. H. Kim (2018) Efficient production of 1,3–propanediol from crude glycerol by repeated fed–batch fermentation strategy of a lactate and 2,3–butanediol deficient mutant of Klebsiella pneumoniae. Microbial Cell Fact. 17: 92.CrossRefGoogle Scholar
  10. 10.
    Lee. J. H., M. Y. Jung, and M. K. Oh (2018) High–yield production of 1,3–propanediol from glycerol by metabolically engineered Klebsiella pneumoniae. Biotechnol. Biofuel. 11: 104CrossRefGoogle Scholar
  11. 11.
    Huang, H., C. S. Gong, and G. T. Tsao (2002) Production of 1,3–propanediol by Klebsiella pneumoniae. Appl. Biochem. Biotechnol. 98–100: 687–698.CrossRefGoogle Scholar
  12. 12.
    Chen, X., Z. Xiu, J. Wang, D. Zhang, and P. Xu (2003) Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3–propanediol by Klebsiella pneumoniae under microaeriboic conditions. Enzyme Microb. Technol. 33: 386–394.CrossRefGoogle Scholar
  13. 13.
    Cheng, K. K., J. A. Zhang, D. H. Liu, Y. Sun, H. J. Liu, M. D. Yang, and J. M. Xu (2007) Pilot–scale production of 1,3–propanediol using Klebsiella pneumoniae. Proc. Biochem. 42: 740–744.CrossRefGoogle Scholar
  14. 14.
    Zong, H., X. Liu, W. Chen, B. Zhuge, and J. Sun (2017) Construction of glycerol synthesis pathway in Klebsiella pneumoniae for bioconversion of glucose into 1,3–propanediol. Biotechnol. Bioprocess Eng. 22: 549–555.CrossRefGoogle Scholar
  15. 15.
    Ma, B. B., X. L. Xu, G. L. Zhang, L. W. Wang, M. Wu, and Li (2009) Microbial production of 1,3–propanediol by Klebsiella pneumoniae XJPD–Li under different aeration strategies. Appl. Biochem. Biotechnol. 152:127–134.CrossRefGoogle Scholar
  16. 16.
    Soetaert, W. and E. J. Vandamme (2010) Industrial biotechnology: sustainable growth and economic success. Wiley–VCH, Weinheim.CrossRefGoogle Scholar
  17. 17.
    Lu, X. Y., S. L. Ren, J. Z. Lu, H. Zong, J. Song, and B. Zhuge (2018) Enhanced 1,3–propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect. J. Appl. Microbiol. 124: 682–690.CrossRefGoogle Scholar
  18. 18.
    Maurus, R., N. T. Nguyen, D. J. Stokell, A. Ayed, P. G. Hultin, H. W. Duckworth, and G. D. Brayer (2003) Insights into the evolution of allosteric properties. The NADH binding site of hexameric type IIcitrate synthases. Biochemistr. 42: 5555–5565.CrossRefGoogle Scholar
  19. 19.
    Stokell, D. J., L. J. Donald, R. Maurus, N. T. Nguyen, G. Sadler, K. Choudhary, P. G. Hultin, G. D. Brayer, and H. W. Duckworth (2003) Probing the roles of key residues in the unique regulatory NADH binding site of type IIcitrate synthase of Escherichia coli. J. Biol. Chem. 278: 35435–35443.CrossRefGoogle Scholar
  20. 20.
    Francois, J. A., C. M. Starks, S. Sivanuntakom, H. Jiang, and A. E. Ransome (2006) Structure of a NADH–insensitive hexamoeric citrate synthase that resists acid inactivation. Biochemistr. 45: 13487–13499.CrossRefGoogle Scholar
  21. 21.
    Iuchi, S. and E. C. C. Lin (1988) ArcA, a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc. Natl. Acad. Sci. US. 85: 1888–1892.CrossRefGoogle Scholar
  22. 22.
    Sauer, U., V. Hatzimanikatis, J. E. Bailey, M. Hochuli, T. Szyperski, and K. Wuthrich (1997) Metabolic fluxes in riboflavin–producing Bacillus substilis. Nat. Biotechnol. 15: 448–452.CrossRefGoogle Scholar
  23. 23.
    Fischer, E., N. Zamboni, and U. Sauer (2004) High–throughput metabolic flux analysis based on gas chromatography–mass spectrometry derived 13C constraints. Anal. Biochem. 325: 308–316.CrossRefGoogle Scholar
  24. 24.
    Perrenoud, A. and U. Sauer (2005) Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J. Bacteriol. 187: 3171–3179.CrossRefGoogle Scholar
  25. 25.
    Shin, S. H., S. Kim, J. Y. Kim, S. Lee, Y. Um, M. K. Oh, Y. R. Kim, J. Lee, and K. S. Yang (2012) Complete genome sequence of the 2,3–butanediol–producing Klebsiella pneumoniae strain KCTC 2242. J. Bacteriol. 194: 2736–2737.CrossRefGoogle Scholar
  26. 26.
    Jiang, W. Y., D. Bikard, D. Cox, F. Zhang, and L. A. Marraffini (2013) RNA–guided editing of bacterial genomes using CRISPRCas systems. Nat. Biotechnol. 2013. 31: 233–239.Google Scholar
  27. 27.
    Qi, L. S., M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman, A. P. Arkin, and W. A. Lim (2013) Repurposing CRISPR as an RNA–guided platform for sequence–specific control of gene expression. Cel. 152: 1173–1183.CrossRefGoogle Scholar
  28. 28.
    Heo, M.J., H. M. Jung, J. Um, S. W. Lee, and M. K. Oh (2017) Controlling citrate synthase expression by CRISPR/Cas9 genome editing for n–butanol production in Escherichia coli. ACS Synth. Biol. 6:182–189.CrossRefGoogle Scholar
  29. 29.
    Datsenko, K. A. and B. L. Wanner (2000) One–step inactivation of chromosomal genes in Escherichia coli K–12 using PCR products. Proc. Natl. Acad. Sci. USA 200. 97: 6640–6645.CrossRefGoogle Scholar
  30. 30.
    Guex, N. and M. C. Peitsch (1997) SWISS–MODEL and the Swiss–PdbViewer: An environment for comparative protein modeling. Electrophoresi. 18: 2714–2723.CrossRefGoogle Scholar
  31. 31.
    Unden, G. and J. Bongaerts (1997) Alternative respiratory pathways of Escherichia coli: Energetics and transcriptional regulation in response to electron acceptors. BBA–Bioenergetic. 1320: 217–234.CrossRefGoogle Scholar
  32. 32.
    Knowles, J. R. (1980) Enzyme–Catalyzed Phosphoryl Transfer–Reactions. Annu. Rev. Biochem. 49: 877–919.CrossRefGoogle Scholar
  33. 33.
    Shalel–Levanon, S., K. Y. San, and G. N. Bennett (2005) Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metab. Eng. 7: 364–374.CrossRefGoogle Scholar
  34. 34.
    Wiegand, G. and S. J. Remington (1986) Citrate synthase–structure, control, and mechanism. Annu. Rev. Biophys. Biochem. 15: 97–117.CrossRefGoogle Scholar
  35. 35.
    Cunningham, L. and J. R. Guest (1998) Transcription and transcript processing in the sdhCDAB–sucABCD operon of Escherichia coli. Microbiolog. 144: 2113–2123.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jung Hun Lee
    • 1
    • 2
  • Hwi-Min Jung
    • 1
  • Moo-Young Jung
    • 3
  • Min-Kyu Oh
    • 1
    Email author
  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea
  2. 2.Proteomics Core Facility, Biomedical Research InstituteSeoul National University HospitalSeoulKorea
  3. 3.CJ Research Institute of BiotechnologySuwonKorea

Personalised recommendations