Advertisement

Biotechnology and Bioprocess Engineering

, Volume 23, Issue 5, pp 532–540 | Cite as

Kinetics and Mechanism of Ultrasound-assisted Extraction of Paclitaxel from Taxus chinensis

  • Kyung-Wan Yoo
  • Jin-Hyun Kim
Research Paper
  • 1 Downloads

Abstract

Batch experimental studies were carried out for the ultrasound-assisted extraction of paclitaxel from Taxus chinensis while varying parameters such as ultrasound power, extraction temperature and contact time. The extraction of the majority of the paclitaxel (~99%) was achieved from the biomass by a single extraction at 380W of ultrasound power for a period of 10 min. The kinetics data obtained for the paclitaxel extractions, and the dominant role played by intraparticle diffusion, were found to be in concordance with the pseudo-second-order model, and the intraparticle diffusion model respectively. The effective diffusion coefficient of paclitaxel (4.1882 × 10-13 ~ 5.7093 × 10-13 m2/s) and the mass transfer coefficient (4.705 × 10-8 ~ 14.1160 × 10-8 m/s) increased when the extraction temperature and ultrasound power were raised.

Keywords

paclitaxel ultrasound-assisted extraction kinetics effective diffusion coefficient mass transfer coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, J. H. (2006) Paclitaxel: recovery and purification in commercialization step. Korean J. Biotechnol. Bioeng. 21: 1–10.Google Scholar
  2. 2.
    Bang, S. Y. and J. H. Kim (2017) Isotherm, kinetic, and thermodynamic studies on the adsorption behavior of 10-deacetylpaclitaxel onto Sylopute. Biotechnol. Bioproc. Eng. 22: 620–630.CrossRefGoogle Scholar
  3. 3.
    Kim, G. J. and J. H. Kim (2015) Enhancement of extraction efficiency of paclitaxel from biomass using ionic liquid-methanol co-solvents under acidic conditions. Process Biochem. 50: 989–996.CrossRefGoogle Scholar
  4. 4.
    Kim, H. S. and J. H. Kim (2017) Kinetics and thermodynamics of microwave-assisted drying of paclitaxel for removal of residual methylene chloride. Process Biochem. 56: 163–170.CrossRefGoogle Scholar
  5. 5.
    Rao, K. V., J. B. Hanuman, C. Alvarez, M. Stoy, J. Juchum, R.M. Davies, and R. Baxley (1995) A new large-scale process for taxol and related taxanes from Taxus brevifolia. Pharm. Res. 12: 1003–1010.CrossRefGoogle Scholar
  6. 6.
    Baloglu, E. and D. G. I. Kingston (1999) A new semisynthesis of paclitaxel from baccatin III. J. Nat. Prod. 62: 1068–1071.CrossRefGoogle Scholar
  7. 7.
    Choi, H. K., S. J. Son, G. H. Na, S. S. Hong, Y. S. Park, and J. Y. Song (2002) Mass production of paclitaxel by plant cell culture. Korean J. Plant Biotechnol. 29: 59–62.CrossRefGoogle Scholar
  8. 8.
    Shin, H. S. and J. H. Kim (2016) Isotherm, kinetic and thermodynamic characteristics of adsorption of paclitaxel onto Diaion HP-20. Process Biochem. 51: 917–924.CrossRefGoogle Scholar
  9. 9.
    Kim, J. H. (2000) Optimization of extraction process for mass production of paclitaxel from plant cell cultures. Korean J. Biotechnol. Bioeng. 15: 346–351.Google Scholar
  10. 10.
    Živkovic, J., K. Šavikin, T. Jankovic, N. Cujic, and N. Menkovic (2018) Optimization of ultrasound-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Sep. Purif. Technol. 194: 40–47.CrossRefGoogle Scholar
  11. 11.
    Cheung, Y. C. and J. Y. Wu (2013) Kinetic models and process parameters for ultrasound-assisted extraction of water-soluble components and polysaccharides from a medicinal fungus. Biochem. Eng. J. 79: 214–220.CrossRefGoogle Scholar
  12. 12.
    Alessandro, L. G., K. Kriaa, I. Nikov, and K. Dimitrov (2012) Ultrasound assisted extraction of polyphenols from black chokeberry. Sep. Purif. Technol. 93: 42–47.CrossRefGoogle Scholar
  13. 13.
    Zhongli, P., Q. Wenjuan, M. Haile, G. A. Griffiths, and H. M. Tara (2011) Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason. Sonochem. 18: 1249–1257.CrossRefGoogle Scholar
  14. 14.
    Ramandi, N. F., A. Ghsssempour, N. M. Najafi, and E. Ghasemi (2017) Optimization of ultrasonic assisted extraction of fatty acids from Borago officinalis L. flower by central composite design. Arabian J. Chem. 10: S23–S27.CrossRefGoogle Scholar
  15. 15.
    Lee, C. G. and J. H. Kim (2017) A kinetic and thermodynamic study of fractional precipitation of paclitaxel from Taxus chinensis. Process Biochem. 59: 216–222.CrossRefGoogle Scholar
  16. 16.
    Kim, T. W. and J. H. Kim (2016) Kinetics and thermodynamics of paclitaxel extraction from plant cell culture. Korean J. Chem. Eng. 33: 3175–3183.CrossRefGoogle Scholar
  17. 17.
    Ha, G. S. and J. H. Kim (2016) Kinetic and thermodynamic characteristics of ultrasound-assisted extraction for recovery of paclitaxel from biomass. Process Biochem. 51: 1664–1673.CrossRefGoogle Scholar
  18. 18.
    Langergren, S. and B. K. Svenska (1898) Zur theoie der sogenannten adsorption geloester stoffe. Veter. Hand. 24: 1–39.Google Scholar
  19. 19.
    Rakotondramasy-Rabesiaka, L., J. L. Havet, C. Porte, and H. Fauduet (2007) Solid-liquid extraction protopine from Fumaria officinalis L.-Analysis determination, kinetic reaction and model building. Sep. Purif. Technol. 54: 253–261.CrossRefGoogle Scholar
  20. 20.
    Ho, Y. S., H. A. Harouna-Oumarou, H. Fauduet, and C. Porte (2005) Kinetics and model building of leaching of water-soluble compounds of Tilia sapwood. Sep. Purif. Technol. 45: 169–173.CrossRefGoogle Scholar
  21. 21.
    Weber, W. J. and J. C. Morris (1963) Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89: 31–59.Google Scholar
  22. 22.
    Krishnan, R. Y. and K. S. Rajan (2016) Microwave assisted extraction of flavonoids from Terminalia bellerica: Study of kinetics and thermodynamics. Sep. Purif. Technol. 157: 169–178.CrossRefGoogle Scholar
  23. 23.
    Krishnan, R. Y., M. N. Chandran, V. Vadivel, and K. S. Rajan (2016) Insights on the influence of microwave irradiation on the extraction of flavonoids from Terminalia chebula. Sep. Purif. Technol. 170: 224–233.CrossRefGoogle Scholar
  24. 24.
    Rakotondramasy-Rabesiaka, L., J. L. Havet, C. Porte, and H. Fauduet (2010) Estimation of effective diffusion and transfer rate during the protopine extraction process from Fumaria officinalis L. Sep. Purif. Technol. 76: 126–131.CrossRefGoogle Scholar
  25. 25.
    Davoud, S., S. F. B. Bibi, M. K. Mohamad, S. N. Zahra, K. Farhad, and S. Amirhossein (2014) Oil stability index and biological activities of Achillea biebersteinii and Achillea wilhelmsii extracts as influenced by various ultrasound intensities. Ind. Crop. Prod. 55: 163–172.CrossRefGoogle Scholar
  26. 26.
    John, F. (2011) Ultrasonics - number and size of cavitation bubbles, Cleaning Technologies Group, Available from: http://techblog.ctgclean.com/2011/12/ultrsonics-number-and-size-ofcavitation-bubbles.Google Scholar
  27. 27.
    Meziane, S. and H. Kadi (2008) Kinetics and thermodynamics of oil extraction from olive cake. J. Am. Oil Chem. Soc. 85: 391–396.CrossRefGoogle Scholar
  28. 28.
    Qu, W., Z. Pan, and H. Ma (2010) Extraction modeling and activities of antioxidants from pomegranate mare. J. Food. Eng. 99: 16–23.CrossRefGoogle Scholar
  29. 29.
    Kavitha, D. and C. Namasivayam (2007) Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour. Technol. 98: 14–21.CrossRefGoogle Scholar
  30. 30.
    Ji, J., X. Lu, M. Cai, and Z. Xu (2006) Improvement of leaching process of geniposide with ultrasound. Ultrason. Sonochem. 13: 455–462.CrossRefGoogle Scholar
  31. 31.
    Skerget, M. and Z. Knez (2001) Modelling high pressure extraction processes. Comput. Chem. Eng. 25: 879–886.CrossRefGoogle Scholar
  32. 32.
    Tao, Y., Z. Zhang, and D. Sun (2014) Experimental and modeling studies of ultrasound-assisted release of phenolics from oak chips into model wine. Ultrason. Sonochem. 21: 1839–1848.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKongju National UniversityCheonanKorea

Personalised recommendations