Biotechnology and Bioprocess Engineering

, Volume 22, Issue 5, pp 637–646 | Cite as

Chemical characterization of dissolved organic matter in moist acidic tussock tundra soil using ultra-high resolution 15T FT-ICR mass spectrometry

Research Paper


Global warming is considered one of the most serious environmental issues, substantially mediating abrupt climate changes, and has stronger impacts in the Arctic ecosystems than in any other regions. In particular, thawing permafrost in the Arctic region with warming can be strongly contributing the emission of greenhouse gases (CO2 and CH4) that are produced from microbial decomposition of preserved soil organic matter (SOM) or are trapped in frozen permafrost soils, consequently accelerating global warming and abrupt climate changes. Therefore, understanding chemical and physical properties of permafrost SOM is important for interpreting the chemical and biological decomposability of SOM. In this study, we investigated dissolved organic matter (DOM) along the soil depth profile in moist acidic tussock tundra to better understand elemental compositions and distributions of the arctic SOM to evaluate their potential decomposability under climate change. To achieve ultra-high resolution mass profiles, the soil extracts were analyzed using a 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer in positive and negative ion modes via electrospray ionization. The results of this analysis revealed that the deeper organic soil (2Oe1 horizon) exhibits less CHON class and more aromatic class compounds compared to the surface organic soils, thus implying that the 2Oe1 horizon has undergone a more decomposition process and consequently possessed the recalcitrant materials. The compositional features of DOM in the Arctic tundra soils are important for understanding the changes in biogeochemical cycles caused from permafrost changes associated with global warming and climate change.


dissolved organic matter FT-ICR MS arctic tundra soil elemental composition decomposability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12257_2017_121_MOESM1_ESM.pdf (2 mb)
Supplementary material, approximately 2.01 MB.


  1. 1.
    Oechel, W. C., S. J. Hastings, G. Vourlrtis, M. Jenkins, G. Riechers, and N. Grulke (1993) Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361: 520–523.CrossRefGoogle Scholar
  2. 2.
    Ping, C. L., G. J. Michaelson, M. T. Jorgenson, J. M. Kimble, H. Epstein, V. E. Romanovsky, and D. A. Walker (2008) High stocks of soil organic carbon in the North American Arctic region. Nat. Geosci. 1: 615–619.CrossRefGoogle Scholar
  3. 3.
    Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cycles 23: GB2023.CrossRefGoogle Scholar
  4. 4.
    Ward, C. P. and R. M. Cory (2015) Chemical composition of dissolved organic matter draining permafrost soils. Geochim. Cosmochim. Acta 167: 63–79.CrossRefGoogle Scholar
  5. 5.
    Grosse, G., J. Harden, M. Turetsky, A. D. McGuire, P. Camill, C. Tarnocai, S. Frolking, E. A. G. Schuur, T. Jorgenson, S. Marchenko, V. Romanovsky, K. P. Wickland, N. French, M. Waldrop, L. Bourgeau-Chavez, and R. G. Striegl (2011) Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. 116: G00K6.CrossRefGoogle Scholar
  6. 6.
    Bardgett, R. D., C. Freeman, and N. J. Ostle (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2: 805–814.CrossRefGoogle Scholar
  7. 7.
    Schuur, E. A., J. G. Vogel, K. G. Crummer, H. Lee, J. O. Sickman, and T. E. Osterkamp (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459: 556–559.CrossRefGoogle Scholar
  8. 8.
    Powlson, D. S., P. R. Hirsch, and P. C. Brookes (2001) The role of soil microorganisms in soil organic matter conservation in the tropics. Nutr. Cycl. Agroecosyst. 61: 41–51.CrossRefGoogle Scholar
  9. 9.
    Dunaj, S. J., J. J. Vallino, M. E. Hines, M. Gay, C. Kobyljanec, and J. N. Rooney-Varga (2012) Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells. Environ. Sci. Technol. 46: 1914–1922.CrossRefGoogle Scholar
  10. 10.
    Jastrow, J. D., R. M. Miller, and J. Lussenhop (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol. Biochem. 30: 905–916.CrossRefGoogle Scholar
  11. 11.
    Chenu, C., C. Rumpel, and J. Lehmann (2015) Methods for studying soil organic matter: Nature, dynamics, spatial accessibility, and interaction with minerals. pp. 383–419 Academic Press, London, UK.Google Scholar
  12. 12.
    Kogel-Knabner, I. (2000) Analytical approaches for characterizing soil organic matter. Org. Geochem. 31: 609–625.CrossRefGoogle Scholar
  13. 13.
    Beyer, L., C. Wachendorf, and C. Koebbemann (1993) A simple wet chemical extraction procedure to characterize soil organic matter (SOM). I. application and recovery rate. Commun. Soil Sci. Plant Anal. 24: 1645–1663.CrossRefGoogle Scholar
  14. 14.
    Poirier, N., S. P. Sohi, J. L. Gaunt, N. Mahieu, E. W. Randall, D. S. Powlson, and R. P. Evershed (2005) The chemical composition of measurable soil organic matter pools. Org. Geochem. 36: 1174–1189.CrossRefGoogle Scholar
  15. 15.
    Bonfleur, E. J., R. S. Kookana, V. L. Tornisielo, and J. B. Regitano (2016) Organomineral interactions and herbicide sorption in brazilian tropical and subtropical oxisols under no-tillage. J. Agric Food Chem. 64: 3925–3934.CrossRefGoogle Scholar
  16. 16.
    Savini, M. C., R. M. Loewy, V. E. Nicotra, and M. E. Parolo (2017) Contribution of soil components on the sorption of chlorpyrifos. Water Air Soil Pollut. 228: 36.CrossRefGoogle Scholar
  17. 17.
    Chen, W., P. Westerhoff, J. A. Leenheer, and K. Booksh (2003) Fluorescence excitation-emission matrix regional intergration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 37: 5701–5710.CrossRefGoogle Scholar
  18. 18.
    De la Rosa, J. M., J. A. González-Pérez, R. González-Vázquez, H. Knicker, E. López-Capel, D. A. C. Manning, and F. J. González-Vila (2008) Use of pyrolysis/GC-MS combined with thermal analysis to monitor C and N changes in soil organic matter from a Mediterranean fire affected forest. Catena 74: 296–303.CrossRefGoogle Scholar
  19. 19.
    Eshetu, B., G. Jandl, and P. Leinweber (2012) Compost changed soil organic matter molecular composition: A Py-GC/MS and Py-FIMS study. Compost. Sci. Util. 20: 230–238.CrossRefGoogle Scholar
  20. 20.
    Cho, Y., A. Ahmed, A. Islam, and S. Kim (2015) Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics. Mass Spectrom Rev. 34: 248–263.CrossRefGoogle Scholar
  21. 21.
    Mazur, D. M., M. Harir, P. Schmitt-Kopplin, O. V. Polyakova, and A. T. Lebedev (2016) High field FT-ICR mass spectrometry for molecular characterization of snow board from Moscow regions. Sci. Total Environ. 557–558: 12–19.CrossRefGoogle Scholar
  22. 22.
    Ksionzek, K. B., O. J. Lechtenfeld, S. L. McCallister, P. Schmitt-Kopplin, J. K. Geuer, W. Geibert, and B. P. Koch (2016) Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory. Science 354: 456–459.CrossRefGoogle Scholar
  23. 23.
    Guigue, J., M. Harir, O. Mathieu, M. Lucio, L. Ranjard, J. Lévêque, and P. Schmitt-Kopplin (2016) Ultrahigh-resolution FT-ICR mass spectrometry for molecular characterisation of pressurised hot water-extractable organic matter in soils. Biogeochem. 128: 307–326.CrossRefGoogle Scholar
  24. 24.
    Lobodin, V. V., P. Juyal, A. M. McKenna, R. P. Rodgers, and A. G. Marshall (2014) Lithium cationization for petroleum analysis by positive ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy and Fuels 28: 6841–6847.CrossRefGoogle Scholar
  25. 25.
    Antony, R., A. M. Grannas, A. S. Willoughby, R. L. Sleighter, M. Thamban, and P. G. Hatcher (2014) Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet. Environ. Sci. Technol. 48: 6151–6159.CrossRefGoogle Scholar
  26. 26.
    Wu, Z., R. P. Rodgers, and A. G. Marshall (2004) Two-and threedimensional van krevelen diagrams: A graphical analysis complementary to the kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahighresolution broadband fourier transform ion cyclotron resonance mass measurements. Anal. Chem. 76: 2511–2516.CrossRefGoogle Scholar
  27. 27.
    Kim, S., R. W. Kramer, and P. G. Hatcher (2003) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal. Chem. 75: 5336–5344.CrossRefGoogle Scholar
  28. 28.
    Mann, B. F., H. Chen, E. M. Herndon, R. K. Chu, N. Tolic, E. F. Portier, T. Roy Chowdhury, E. W. Robinson, S. J. Callister, S. D. Wullschleger, D. E. Graham, L. Liang, and B. Gu (2015) Indexing permafrost soil organic matter degradation using highresolution mass spectrometry. PLoS One 10: e0130557.CrossRefGoogle Scholar
  29. 29.
    Hobbie, S. E., T. A. Miley, and M. S. Weiss (2002) Carbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in northern Alaska. Ecosystems 5: 761–774.CrossRefGoogle Scholar
  30. 30.
    Hobbie, S. E. and L. Gough (2004) Litter decomposition in moist acidic and non-acidic tundra with different glacial histories. Oecologia 140: 113–124.CrossRefGoogle Scholar
  31. 31.
    Ricketts, M. P., R. S. Poretsky, J. M. Welker, and M. A. Gonzalez-Meler (2016) Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska. Soil 2: 459–474.CrossRefGoogle Scholar
  32. 32.
    Kim, H. (2016) Study on prokaryotic community structure in moist acidic tundra soil in Council, Alaska. Ph. D. Thesis. Seoul National University, Seoul, Republic of Korea.Google Scholar
  33. 33.
    Choi, J. H., J. Ryu, S. Jeon, J. Seo, Y. H. Yang, S. P. Pack, S. Choung, and K. S. Jang (2017) In-depth compositional analysis of water-soluble and -insoluble organic substances in fine (PM2.5) airborne particles using ultra-high-resolution 15T FTICR MS and GC×GC-TOFMS. Environ. Pollut. 225: 329–337.CrossRefGoogle Scholar
  34. 34.
    Mazzoleni, L. R., B. M. Ehrmann, X. Shen, A. G. Marshall, and J. L. Collett, Jr. (2010) Water-soluble atmospheric organic matter in fog: Exact masses and chemical formula identification by ultrahigh-resolution fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 44: 3690–3697.CrossRefGoogle Scholar
  35. 35.
    Koch, B. P., M. R. Witt, R. Engbrodt, T. Dittmar, and G. Kattner (2005) Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Geochim. Cosmochim. Acta 69: 3299–3308.CrossRefGoogle Scholar
  36. 36.
    D’Andrilli, J., T. Dittmar, B. P. Koch, J. M. Purcell, A. G. Marshall, and W. T. Cooper (2010) Comprehensive characterization of marine dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry with electrospray and atmospheric pressure photoionization. Rapid Commun. Mass Spectrom. 24: 643–650.CrossRefGoogle Scholar
  37. 37.
    Wozniak, A. S., J. E. Bauer, R. L. Sleighter, R. M. Dickhut, and P. G. Hatcher (2008) Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Atmos. Chem. Phys. 8: 5099–5111.CrossRefGoogle Scholar
  38. 38.
    Ohno, T., T. B. Parr, M. C. Gruselle, I. J. Fernandez, R. L. Sleighter, and P. G. Hatcher (2014) Molecular composition and biodegradability of soil organic matter: A case study comparing two new England forest types. Environ. Sci. Technol. 48: 7229–7236.CrossRefGoogle Scholar
  39. 39.
    Koch, B. P. and T. Dittmar (2006) From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 20: 926–932.CrossRefGoogle Scholar
  40. 40.
    Balcarczyk, K. L. and J. B. Jones Jr. (2009) Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochem. 94: 255–270.CrossRefGoogle Scholar
  41. 41.
    Kane, D. L., L. D. Hinzman, and J. P. Zarling (1991) Thermal response of the active layer to climatic warming in a permafrost environment. Cold Reg. Sci. Tech. 19: 111–122.CrossRefGoogle Scholar
  42. 42.
    Bockheim, J. G. and C. Tarnocai (1998) Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma. 81: 281–293.CrossRefGoogle Scholar
  43. 43.
    Kaiser, C., H. Meyer, C. Biasi, O. Rusalimova, P. Barsukov, and A. Richter (2007) Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. J Geophys. Res. 112: G02017.CrossRefGoogle Scholar
  44. 44.
    Ernakovich, J. G., M. D. Wallenstein, and F. J. Calderon (2015) Chemical indicators of cryoturbation and microbial processing throughout an Alaskan permafrost soil depth profile. Soil Sci. Soc. Am. J. 79: 783–793.CrossRefGoogle Scholar
  45. 45.
    Grosse, G., J. W. Harden, M. Turetsky, A. D. McGuire, P. Camill, C. Tarnocai, S. Frolking, E. A. G. Schuur, T. Jorgenson, S. Marchenko, V. Romanovsky, K. P. Wickland, N. French, M. Waldrop, L. Bourgeau-Chavez, and R. G. Strigl (2011) Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. 116: G00K6.CrossRefGoogle Scholar
  46. 46.
    Staff, S. S. (2014) Keys to Soil Taxonomy. USDA-Natural Resources Conservation Service, Washington DC, USA.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jung Hoon Choi
    • 1
    • 2
  • Yun-Gon Kim
    • 3
  • Yoo Kyung Lee
    • 4
  • Seung Pil Pack
    • 2
  • Ji Young Jung
    • 4
  • Kyoung-Soon Jang
    • 1
    • 5
  1. 1.Biomedical Omics GroupKorea Basic Science InstituteCheongjuKorea
  2. 2.Department of Biotechnology and BioinformaticsKorea UniversitySejongKorea
  3. 3.Department of Chemical EngineeringSoongsil UniversitySeoulKorea
  4. 4.Division of Life Sciences, Korea Polar Research InstituteKIOSTIncheonKorea
  5. 5.Department of Bio-Analytical ScienceUniversity of Science and TechnologyDaejeonKorea

Personalised recommendations