Advertisement

Biotechnology and Bioprocess Engineering

, Volume 22, Issue 2, pp 195–199 | Cite as

Expression of NADH-oxidases enhances ethylene productivity in Saccharomyces cerevisiae expressing the bacterial EFE

  • Nina Johansson
  • Karl O. Persson
  • Joakim NorbeckEmail author
  • Christer Larsson
Research Paper

Abstract

Ethylene is a major petrochemical for which biotechnological production methods are an attractive alternative. Here we use a system based on a bacterial ethylene forming enzyme (EFE) expressed in Saccharomyces cerevisiae. Metabolic modelling performed in a previous study identified re-oxidation of NADH as a factor limiting ethylene production in S. cerevisiae. In line with this, we here found that strains with multicopy plasmid expression of the heterologous oxidases nox and Aox1 led to significantly increased specific ethylene productivity, up 12 and 36%, respectively, compared to the control strain with empty plasmid. However the productivity and yield was only improved in the AOX expressing strain compared to that of the control strain. Both oxidase expressing strains also exhibited increased respiration rates compared to the reference strain, with specific oxygen consumption rates being roughly doubled in both strains. The AOX strain furthermore exhibited a significant increase in the EFE substrate 2-oxoglutarate formation compared to the reference strain, linking an improvement in ethylene production to both increased respiratory capacity and increased substrate availability, thereby corroborating our previous finding.

Keywords

ethylene Saccharomyces cerevisiae in silico metabolic modelling respiration oxidase 2-oxoglutarate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, D. O. and S. F. Yang (1979) Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA. 76: 170–174.CrossRefGoogle Scholar
  2. 2.
    Yang, S. F. and N. E. Hoffman (1984) Ethylene biosynthesis and its regulation in higher-plants. Annu. Rev. Plant Phys. 35: 155–189.CrossRefGoogle Scholar
  3. 3.
    Fukuda, H., T. Ogawa, and S. Tanase (1993) Ethylene production by micro-organisms. Adv. Microb. Physiol. 35: 275–306.CrossRefGoogle Scholar
  4. 4.
    Nagahama, K., T. Ogawa, T. Fujii, and H. Fukuda (1992) Classification of ethylene-producing bacteria in terms of biosynthetic pathways to ethylene. J. Ferment. Bioeng. 73: 1–5.CrossRefGoogle Scholar
  5. 5.
    Chen, X., Y. Liang, J. Hua, L. Tao, W. Qin, and S. Chen (2010) Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene. Int. J. Biol. Sci. 6: 96–106.CrossRefGoogle Scholar
  6. 6.
    Eckert, C., W. Xu, W. Xiong, S. Lynch, J. Ungerer, L. Tao, R. Gill, P. C. Maness, and J. Yu (2014) Ethylene-forming enzyme and bioethylene production. Biotechnol. Biofuels 7:33.CrossRefGoogle Scholar
  7. 7.
    Ishihara, K., M. Matsuoka, Y. Inoue, S. Tanase, T. Ogawa, and H. Fukuda (1995) Overexpression and in vitro reconstitution of the ethylene-forming enzyme from Pseudomonas syringae. J. Ferment. Bioeng. 79: 205–211.CrossRefGoogle Scholar
  8. 8.
    Ishihara, K., M. Matsuoka, T. Ogawa, and H. Fukuda (1996) Ethylene production using a broad-host-range plasmid in Pseudomonas syringae and Pseudomonas putida. J. Ferment. Bioeng. 82: 509–511.CrossRefGoogle Scholar
  9. 9.
    Sakai, M., T. Ogawa, M. Matsuoka, and H. Fukuda (1997) Photosynthetic conversion of carbon dioxide to ethylene by the recombinant cyanobacterium, Synechococcus sp. PCC 7942, which harbors a gene for the ethylene-forming enzyme of Pseudomonas syringae. J. Ferment. Bioeng. 84: 434–443.CrossRefGoogle Scholar
  10. 10.
    Tao, L., H. J. Dong, X. Chen, S. F. Chen, and T. H. Wang (2008) Expression of ethylene-forming enzyme (EFE) of Pseudomonas syringae pv. glycinea in Trichoderma viride. Appl. Microbiol. Biot. 80: 573–578.CrossRefGoogle Scholar
  11. 11.
    Ungerer, J., L. Tao, M. Davis, M. Ghirardi, P. C. Maness, and J. P. Yu (2012) Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energ. Environ. Sci. 5: 8998–9006.CrossRefGoogle Scholar
  12. 12.
    Pirkov, I., E. Albers, J. Norbeck, and C. Larsson (2008) Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae. Metabol. Eng. 10: 276–280.CrossRefGoogle Scholar
  13. 13.
    Johansson, N., K. O. Persson, P. Quehl, J. Norbeck, and C. Larsson (2014) Ethylene production in relation to nitrogen metabolism in Saccharomyces cerevisiae. FEMS Yeast Res. 14: 1110–1118.Google Scholar
  14. 14.
    Johansson, N., P. Quehl, J. Norbeck, and C. Larsson (2013) Identification of factors for improved ethylene production via the ethylene forming enzyme in chemostat cultures of Saccharomyces cerevisiae. Microbial. Cell Factor. 12:89.CrossRefGoogle Scholar
  15. 15.
    Larsson, C., J. L. Snoep, J. Norbeck, and E. Albers (2011) Flux balance analysis for ethylene formation in genetically engineered Saccharomyces cerevisiae. IET Syst. Biol. 5: 245–251.CrossRefGoogle Scholar
  16. 16.
    Vemuri, G. N., M. A. Eiteman, J. E. McEwen, L. Olsson, and J. Nielsen (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 104: 2402–2407.CrossRefGoogle Scholar
  17. 17.
    Verduyn, C., E. Postma, W. A. Scheffers, and J. P. Van Dijken (1992) Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8: 501–517.CrossRefGoogle Scholar
  18. 18.
    Dynesen, J., H. P. Smits, L. Olsson, and J. Nielsen (1998) Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Appl. Microbiol. Biotechnol. 50: 579–582.CrossRefGoogle Scholar
  19. 19.
    Auzat, I., S. Chapuy-Regaud, G. Le Bras, D. Dos Santos, A. D. Ogunniyi, I. Le Thomas, J. R. Garel, J. C. Paton, and M. C. Trombe (1999) The NADH oxidase of Streptococcus pneumoniae: Its involvement in competence and virulence. Mol. Microbiol. 34: 1018–1028.CrossRefGoogle Scholar
  20. 20.
    Akhter, S., H. C. McDade, J. M. Gorlach, G. Heinrich, G. M. Cox, and J. R. Perfect (2003) Role of alternative oxidase gene in pathogenesis of Cryptococcus neoformans. Infect. Immun. 71: 5794–5802.CrossRefGoogle Scholar
  21. 21.
    Johnson, C. H., J. T. Prigge, A. D. Warren, and J. E. McEwen (2003) Characterization of an alternative oxidase activity of Histoplasma capsulatum. Yeast 20: 381–388.CrossRefGoogle Scholar
  22. 22.
    Luttik, M. A., K. M. Overkamp, P. Kotter, S. de Vries, J. P. van Dijken, and J. T. Pronk (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J. Biol. Chem. 273: 24529–24534.CrossRefGoogle Scholar
  23. 23.
    Small, W. C. and L. McAlister-Henn (1998) Identification of a cytosolically directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae. J. Bacteriol. 180: 4051–4055.Google Scholar
  24. 24.
    Larsson, C., I. L. Pahlman, R. Ansell, M. Rigoulet, L. Adler, and L. Gustafsson (1998) The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14: 347–357.CrossRefGoogle Scholar
  25. 25.
    Pahlman, I. L., L. Gustafsson, M. Rigoulet, and C. Larsson (2001) Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae. Yeast 18: 611–620.CrossRefGoogle Scholar
  26. 26.
    Rigoulet, M., H. Aguilaniu, N. Averet, O. Bunoust, N. Camougrand, X. Grandier-Vazeille, C. Larsson, I. L. Pahlman, S. Manon, and L. Gustafsson (2004) Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol. Cell Biochem. 256-257: 73–81.CrossRefGoogle Scholar
  27. 27.
    Entian, K. D. and P. Kötter (2007) Yeast genetic strain and plasmid collections. pp. 629–666. In: I. Stansfield, and M. Stark (eds.). Methods in Microbiology. Elsevier.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nina Johansson
    • 1
  • Karl O. Persson
    • 2
  • Joakim Norbeck
    • 1
    Email author
  • Christer Larsson
    • 1
  1. 1.Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
  2. 2.Department of Chemistry and Molecular BiologyGothenburg UniversityGothenburgSweden

Personalised recommendations