Biotechnology and Bioprocess Engineering

, Volume 21, Issue 6, pp 695–703 | Cite as

Improvement of 1,3-propanediol oxidoreductase (DhaT) stability against 3-hydroxypropionaldehyde by substitution of cysteine residues

  • Zhengbin Li
  • Soo Moon Ro
  • Balaji Sundara Sekar
  • Eunhee Seol
  • Suman Lama
  • Sun Gu Lee
  • Guangyi WangEmail author
  • Sunghoon ParkEmail author
Research Paper


1,3-propanediol oxidoreductase (DhaT), which catalyzes the conversion of 3-hydroxypropionaldehyde (3-HPA) to 1,3-propanediol (1,3-PD) with the oxidation of NADH to NAD+, is a key enzyme in the production of 1,3-PD from glycerol. DhaT is known to be severely inactivated by its physiological substrate, 3-HPA, due to the reaction of 3-HPA with the thiol group of the cysteine residues. In this study, using site-directed mutagenesis, four cysteine residues in Klebsiella pneumoniae J2B DhaT were substituted to alanine, the amino acid commonly found in cysteine’s positions in other DhaT, individually and in combination. Among the total of 15 mutants developed, a double mutant (C28A_C107A) and a triple mutant (C28A_C93A_C107A) exhibited approximately 50 and 16% higher activity than the wild-type counterpart, respectively, after 1 h incubation with 10 mM 3-HPA. According to detailed kinetic studies, the double mutant had slightly better kinetic properties (V max , K cat , and K m for both 3-HPA and NADH) than wild-type DhaT. This study shows that DhaT stability against 3-HPA can be increased by cysteine-residue removal, albeit to a limited extent.


1,3-propanediol oxidoreductase stability 3-hydroxypropionaldehyde cysteine site-directed mutagenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zeng, A. P. and H. Biebl (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng. Biotechnol. 74: 239–259.Google Scholar
  2. 2.
    Witt, U., R. J. Müller, J. Augusta, H. Widdecke, and W. D. Deckwer (1994) Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Macromol. Chem. Phys. 195: 793–802.CrossRefGoogle Scholar
  3. 3.
    1,3-Propanediol (PDO) Market by Applications (PTT, Polyurethane, Cosmetic, Personal Care & Home Cleaning & Others) & Geography -Global Market Trends & Forecasts to 2021. Scholar
  4. 4.
    Kraus, G. A. (2008) Synthetic methods for the preparation of 1,3-propanediol. CLEAN–Soil, Air, Water 36: 648–651.CrossRefGoogle Scholar
  5. 5.
    Biebl, H., K. Menzel, A. P. Zeng, and W. D. Deckwer (1999) Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52: 289–297.CrossRefGoogle Scholar
  6. 6.
    DuPont Tate & Lyle Bio Products begin Bio-PDO™ production in Tennessee. Scholar
  7. 7.
    Ainala, S. K., S. Ashok, Y. Ko, and S. Park (2013) Glycerol assimilation and production of 1,3-propanediol by Citrobacter amalonaticus Y19. Appl. Microbiol. Biotechnol. 97: 5001–5011.CrossRefGoogle Scholar
  8. 8.
    Johnson, E. A. and E. C. Lin (1987) Klebsiella pneumoniae 1,3-propanediol: NAD+ oxidoreductase. J. Bacteriol. 169: 2050–2054.CrossRefGoogle Scholar
  9. 9.
    Daniel, R., R. Boenigk, and G. Gottschalk (1995) Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. J. Bacteriol. 177: 2151–2156.CrossRefGoogle Scholar
  10. 10.
    Malaoui, H. and R. Marczak (2000) Purification and characterization of the 1-3-propanediol dehydrogenase of Clostridium butyricum E5. Enz. Microb. Technol. 27: 399–405.CrossRefGoogle Scholar
  11. 11.
    Qi, X., J. Yun, Y. Qi, H. Zhang, F. Wang, Q. Guo, and Z. Cao (2016) Expression and characterization of a novel 1,3-propanediol dehydrogenase from Lactobacillus brevis. Appl. Biochem. Biotechnol. 179: 959–972.CrossRefGoogle Scholar
  12. 12.
    Marçal, D., A. T. Rêgo, M. A. Carrondo, and F. J. Enguita (2009) 1,3-propanediol dehydrogenase from Klebsiella pneumoniae: Decameric quaternary structure and possible subunit cooperativity. J. Bacteriol. 191: 1143–1151.CrossRefGoogle Scholar
  13. 13.
    Lama, S., S. M. Ro, E. Seol, B. S. Sekar, S. K. Ainala, J. Thangappan, H. Song, D. Seung, and S. Park (2015) Characterization of 1,3-propanediol oxidoreductase (DhaT) from Klebsiella pneumoniae J2B. Biotechnol. Bioproc. Eng. 20: 971–979.CrossRefGoogle Scholar
  14. 14.
    Talarico, T. L. T. and W. J. Dobrogosz (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob. Agents Chemother. 33: 674–679.CrossRefGoogle Scholar
  15. 15.
    Vollenweider, S. and C. Lacroix (2004) 3-hydroxypropionaldehyde: applications and perspectives of biotechnological production. Appl. Microbiol. Biotechnol. 64: 16–27.CrossRefGoogle Scholar
  16. 16.
    Vollenweider, S., S. Evers, K. Zurbriggen, and C. Lacroix (2010) Unraveling the hydroxypropionaldehyde (HPA) system: An active antimicrobial agent against human pathogens. J. Agric. Food Chem. 58: 10315–10322.CrossRefGoogle Scholar
  17. 17.
    Schaefer, L., T. A. Auchtung, K. E. Hermans, D. Whitehead, B. Borhan, and R. A. Britton (2010) The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiol. 156: 1589–1599.CrossRefGoogle Scholar
  18. 18.
    Zhang, W., J. Min, S. Yu, Z. Tao, L. Zhou, J. Bo, and W. Mu (2016) Improving the thermostability and catalytic efficiency of the D-psicose 3-epimerase from clostridium bolteae ATCC BAA-613 using site-directed mutagenesis. J. Agric. Food Chem. 64: 3386–3393.CrossRefGoogle Scholar
  19. 19.
    Guo, B., Y. Amano, and K. Nozaki (2016) Improvements in glucose sensitivity and stability of trichoderma reesei β-Glucosidase using site-directed mutagenesis. PLoS One 11: e0147301..CrossRefGoogle Scholar
  20. 20.
    Kleiner, D., W. Paul, and M. J. Merrick (1988) Construction of multicopy expression vectors for regulated over-production of proteins in Klebsiella pneumoniae and other enteric bacteria. J. Gen. Microbiol. 134: 1779–1784.Google Scholar
  21. 21.
    Hall, R. H. and E. S. Stern (1950) Acid-catalysed hydration of acrylaldehyde: Kinetics of the reaction and isolation of bhydroxypropionaldehyde. J. Chem. Soc. 490–498.Google Scholar
  22. 22.
    Kruger, N. J. (2009) The bradford method for protein quantitation. Methods Mol. Biol. 32: 17–24.Google Scholar
  23. 23.
    Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403–410.CrossRefGoogle Scholar
  24. 24.
    Stothard, P. (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28: 1102–1111.Google Scholar
  25. 25.
    Morrison, K. L. and G. A. Weiss (2001) Combinatorial alaninescanning. Curr. Opin. Chem. Biol. 5: 302–307.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zhengbin Li
    • 1
  • Soo Moon Ro
    • 2
  • Balaji Sundara Sekar
    • 3
  • Eunhee Seol
    • 3
  • Suman Lama
    • 3
  • Sun Gu Lee
    • 3
  • Guangyi Wang
    • 1
    Email author
  • Sunghoon Park
    • 3
    Email author
  1. 1.Center for Marine Environmental Ecology, School of Environmental Science and EngineeringTianjin UniversityTianjinChina
  2. 2.Interdisciplinary program of Clean TechnologyPusan National UniversityBusanKorea
  3. 3.Department of Chemical and Biomolecular EngineeringPusan National UniversityBusanKorea

Personalised recommendations