Advertisement

Biotechnology and Bioprocess Engineering

, Volume 22, Issue 2, pp 178–185 | Cite as

Screening of microorganisms able to degrade low-rank coal in aerobic conditions: Potential coal biosolubilization mediators from coal to biochemicals

  • Yokimiko David
  • Mary Grace Baylon
  • Sudheer D. V. N. Pamidimarri
  • Kei-Anne Baritugo
  • Cheol Gi Chae
  • You Jin Kim
  • Tae Wan Kim
  • Min-Sik Kim
  • Jeong Geol NaEmail author
  • Si Jae ParkEmail author
Research Paper

Abstract

Coal is one of the major sources of energy, fuel, and other related chemicals. The processes to utilize coal for energy, fuel and other chemicals such as coal combustion, liquefaction, carbonization, and gasification pose a great threat to the environment by emitting toxic particles and CO2 to the atmosphere. Thus, biological beneficiation of coal can be a good strategy to utilize coal with environmental sustainability. Here, we report the screening of microorganisms able to degrade or depolymerize coal. These host strains are potential candidates for the development of biological treatment process of coal. A total of 45 microbial strains were isolated from sludge enriched with coal and were identified based on 16S rRNA sequencing. Four strains of three genera, Cupriavidus sp., Pseudomonas sp., and Alcaligenes sp., were further characterized for their abilities to degrade coal. The degree of coal degradation was analyzed by measuring the increase in absorbance at 450 nm by UV spectroscopy. These microorganisms were also able to increase the pH of the culture media as a response to the acidic nature of coal. Laccase-like activity was also found in these strains when tested for RBBR dye degradation. Since biological degradation of coal through the use of microorganisms is a good alternative to chemical combustion of coal, microbial strains isolated in this study can be potential biological catalysts for coal conversion into valuable chemicals.

Keywords

coal biological treatment coal solubilization coal degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fakoussa, R. M. and M. Hofrichter (1999) Biotechnology and microbiology of coal degradation. Appl. Microbiol. Biotechnol. 52: 25–40.CrossRefGoogle Scholar
  2. 2.
    Machnikowska, H., K. Pawelec, and A. Podgórska (2002) Microbial degradation of low rank coals. Fuel Proc. Technol. 77: 17–23.CrossRefGoogle Scholar
  3. 3.
    Gokcay, C. F., N. Kolankaya, and F. B. Dilek (2001) Microbial solubilization of lignites. Fuel 80: 1421–1433.CrossRefGoogle Scholar
  4. 4.
    Selvi, A. V., R. Banerjee, L. C. Ram, and G. Singh (2009) Biodepolymerization studies of low rank Indian coals. World J. Microbiol. Biotechnol. 25: 1713–1720.CrossRefGoogle Scholar
  5. 5.
    Reiss, J. (1992) Studies on the solubilization of German coal by fungi. Appl. Microbiol. Biotechnol. 37: 830–832.CrossRefGoogle Scholar
  6. 6.
    Schobert H. H. and C. Song (2002) Chemicals and materials from coal in the 21st century. Fuel 81: 15–32.CrossRefGoogle Scholar
  7. 7.
    Silva-Stenico, M. E., C.J. Vengadajellum, H. A. Janjua, S. T. L. Harisson, S. G. Burton, and D. A. Cowan (2007) Degradation of low rank coal by Trichoderma atroviride ES11. J. Ind. Microbiol. Biotechnol. 34: 625–631.CrossRefGoogle Scholar
  8. 8.
    Romanowska I., B. Strzelecki, and S. Bielecki (2015) Biosolubilization of Polish brown coal by Gordonia alkanivorans S7 and Bacillus mycoides NS1020. Fuel Proc. Technol. 131: 430–436.CrossRefGoogle Scholar
  9. 9.
    Quigley, D. R., B. Ward, D. L. Crawford, H. J. Hatcher, and P. R. Dugan (1989) Evidence that microbially produced alkaline materials are involved in coal biosolubilization. Appl. Biochem. Biotechnol. 20: 753–763.CrossRefGoogle Scholar
  10. 10.
    Jiang, F., Z. Li, Z. Lv, T. Gao, J. Yang, Z. Qin, and H. Yuan (2013) The biosolubilization of lignite by Bacillus sp. Y7 and characterization of the soluble products. Fuel 103: 639–645.CrossRefGoogle Scholar
  11. 11.
    Cohen, M. S., K. A. Feldman, C. S. Brown, and E. T. Gray Jr. (1990) Isolation and identification of the coal-solubilizing agent produced by Trametes versicolor. Appl. Environ. Microbiol. 56: 3285–3291.Google Scholar
  12. 12.
    Yuan, H., J. Yang, and W. Chen (2006) Production of alkaline materials, surfactants and enzymes by Penicillium decumbens strain P6 in association with lignite degradation/solubilization. Fuel 85: 1378–1382.CrossRefGoogle Scholar
  13. 13.
    Shi, K. Y., X. X. Tao, S. D. Yin, Y. Du, and Z. P. Lv (2009) Bioliquefaction of Fushun lignite: Characterization of newly isolated lignite liquefying fungus and liquefaction products. Procedia Earth Planet. Sci. 1: 627–633.CrossRefGoogle Scholar
  14. 14.
    Basaran, Y. A., B. Sakintuna, A. Taralp, and Y. Yurum (2003) Bio-liquefaction/solubilization of low-rank Turkish lignites and characterization of the products. Energy & Fuels 17: 1068–1074.CrossRefGoogle Scholar
  15. 15.
    Gao, T. G., F. Jiang, J. S. Yang, B. Z. Li, and H. L. Yuan (2012) Biodegradation of Leonardite an Alkali-producing bacterial community and characterization of the degraded products. Appl. Microbiol. Biotechnol. 93: 2581–2590.CrossRefGoogle Scholar
  16. 16.
    Pokorny, R., P. Olejnikova, M. Balog, P. Zifcak, U. Holker, M. Janssen, J. Bend, M. Hofer, R. Holiencin, D. Hudecova, and L. Varecka (2005) Characterization of microorganisms isolated from lignite excavated from the Záhorie coal mine (southwestern Slovakia). Res. Microbiol. 156: 932–943.CrossRefGoogle Scholar
  17. 17.
    Huang X., N. Santhanam, D.V. Badri, W.J. Hunter, D. K. Manter, S. R. Decker, J. M. Vivanco, and K. F. Reardon (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol. Bioeng. 110: 1616–1626.CrossRefGoogle Scholar
  18. 18.
    Yin S., X. Tao, K. Shi, and Z. Tan (2009) Biosolubilization of Chinese lignite. Fuel 34: 775–781.Google Scholar
  19. 19.
    Sambrook, J. R. and D. W. Russell (2001) Molecular cloning: A laboratory manual. New York Cold Spring Harbor Laboratory, NY, USA.Google Scholar
  20. 20.
    Kiiskinen, L. L., M. Ratto, and K. Kruus (2004) Screening for novel laccase-producing microbes. J. Appl. Microbiol. 97: 640–646.CrossRefGoogle Scholar
  21. 21.
    Schraa, G., M. L. Boone, M. S. Jetten, A. R. van Neerven, P. J. Colberg, and A. J. Zehnder (1986) Degradation of 1, 4-dichlorobenzene by Alcaligenes sp. strain A175. Appl. Environ. Microbiol. 52: 1374–1381.Google Scholar
  22. 22.
    Claus, G. and H. J. Kutzner (1983) Degradation of indole by Alcaligenes spec. Syst. Appl. Microbiol. 4: 169–180CrossRefGoogle Scholar
  23. 23.
    Krooneman, J., E. B. Wieringa, E. R. Moore, J. Gerritse, R. A. Prins, and J. C. Gottschal (1996) Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro) catechols. 62: 2427–2434.Google Scholar
  24. 24.
    Menke, B. and H. J. Rehm (1992) Degradation of mixtures of monochlorophenols and phenol as substrates for free and immobilized cells of Alcaligenes sp. A7-2. Appl. Microbiol. Biotechnol. 37: 655–661.CrossRefGoogle Scholar
  25. 25.
    Leonard, D., C. B. Youssef, C. Destruhaut, N. D. Lindley, and I. Queinnec (1999) Phenol degradation by Ralstonia eutropha: Colorimetric determination of 2-hydroxymuconate semialdehyde accumulation to control feed strategy in fed-batch fermentations. Biotechnol. Bioeng. 65: 407–415.CrossRefGoogle Scholar
  26. 26.
    Louie, T. M., C. M. Webster, and L. Xun (2002) Genetic and biochemical characterization of a 2, 4, 6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J. Bacteriol. 184: 3492–3500.CrossRefGoogle Scholar
  27. 27.
    Jimenez, J. I., B. Miñambres, J. L. Garcia, and E. Diaz (2002) Genomic analysis of the aromatic catabolic pathway from Pseudomonas putida KT2440. Environ. Microbiol. 4: 824–841.CrossRefGoogle Scholar
  28. 28.
    McMahon, A. M., E. M. Doyle, S. Brooks, and K. E. O’Connor (2007) Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6. Enz. Microb. Technol. 40: 1435–1441.CrossRefGoogle Scholar
  29. 29.
    Garg, S. K., M. Tripathi, S. K. Singh, and J. K. Tiwari (2012) Biodecolorization of textile dye effluent by Pseudomonas putida SKG-1 (MTCC 10510) under the conditions optimized for monoazo dye orange II color removal in simulated minimal salt medium. Int. Biodeterior. Biodegrad. 74: 24–35.CrossRefGoogle Scholar
  30. 30.
    Chen, C. C., H. J. Liao, C. Y. Cheng, C. Y. Yen, and Y. C. Chung (2007) Biodegradation of crystal violet by Pseudomonas putida. Biotechnol. Lett. 29: 391–396.CrossRefGoogle Scholar
  31. 31.
    Berezina, N. B., and R. Lefebvre (2015) From organic pollutants to bioplastics: Insights into the bioremediation of aromatic compounds by Cupriavidus necator. New Biotechnol. 32: 47–53.CrossRefGoogle Scholar
  32. 32.
    Trefault, N., R. DE la Iglesia, A. M. Molina, M. Manzano, T. Ledger, D. Perez-Pantoja, M. A. Sanchez, M. Stuardo, and B. Gonzales (2004) Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ. Microbiol. 6: 655–668.CrossRefGoogle Scholar
  33. 33.
    Plumeier, I., D. Perez-Pantoja, S. Heim, B. Gonzales, and D. H. Pieper (2002) Importance of different tfd genes for degradation of chloroaromatics by Ralstonia eutropha JMP134. J. Bacteriol. 184: 4054–4064.CrossRefGoogle Scholar
  34. 34.
    Makkar, N. S. and L. E. Casida Jr. (1987) Cupriavidus necator gen. nov., sp. nov.; A Nonobligate bacterial predator of bacteria in soil. Int. J. Syst. Evol. Microbiol. 37: 323–326.Google Scholar
  35. 35.
    Cowles, C. E., N. N. Nichols, and C. S. Harwood (2000) BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J. Bacteriol. 182: 6339–6346.CrossRefGoogle Scholar
  36. 36.
    Tuleva, B. K., G. R. Ivanov, and N. E. Christova (2002) Biosurfactant production by a new Pseudomonas putida strain. Zeitschrift für Naturforschung C 57: 356–360.CrossRefGoogle Scholar
  37. 37.
    Shi, Y., L. Chai, C. Tang, Z. Yang, H. Zhang, R. Chen, Y. Chen, and Y. Zheng (2013) Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol. Biofuels 6:1.CrossRefGoogle Scholar
  38. 38.
    Simmons, J. S. (1926) A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolation of certain fungi. The J. Infect. Diseases 39: 209–214.CrossRefGoogle Scholar
  39. 39.
    Shi, K. Y., S. D. Yin, X. X. Tao, Y. Du, H. He, Z. P. Lv and N. Xu (2013) Quantitative measurement of coal bio-solubilization by ultraviolet-visible spectroscopy. Energy Sources, Part A 35: 1456–1462.CrossRefGoogle Scholar
  40. 40.
    Engesser, K. H., C. Dohms, and A. Schmid (1994) Microbial degradation of model compounds of coal and production of metabolites with potential commercial value. Fuel Proc. Technol. 40: 217–226.CrossRefGoogle Scholar
  41. 41.
    Fukuoka, K., K. Tanaka, Y. Ozeki, and R. A. Kanaly (2015) Biotransformation of indole by Cupriavidus sp. strain KK10 proceeds through N-heterocyclic-and carbocyclic-aromatic ring cleavage and production of indigoids. Int. Biodeterior. Biodegrad. 97: 13–24.CrossRefGoogle Scholar
  42. 42.
    Matus, V., M. A. Sanchez, M. Martinez, and B. Gonzales (2003) Efficient degradation of 2, 4, 6-trichlorophenol requires a set of catabolic genes related to tcp genes from Ralstonia eutropha JMP134 (pJP4). Appl. Environ. Microbiol. 69: 7108–7115.CrossRefGoogle Scholar
  43. 43.
    Park, S. J., T. W. Kim, M. K. Kim, S. Y. Lee, and S. C. Lim (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol. Adv. 30: 1196–1206.CrossRefGoogle Scholar
  44. 44.
    Lu, J., C. J. Brigham, C. S. Gai, and A. J. Sinskey (2012) Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 96: 283–297.CrossRefGoogle Scholar
  45. 45.
    Oh, Y. H., I. Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S. H. Hong, and S. J. Park (2015) Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Kor. J. Chem. Eng. 32: 1945–1959.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yokimiko David
    • 1
  • Mary Grace Baylon
    • 1
  • Sudheer D. V. N. Pamidimarri
    • 2
  • Kei-Anne Baritugo
    • 1
  • Cheol Gi Chae
    • 1
  • You Jin Kim
    • 1
  • Tae Wan Kim
    • 4
  • Min-Sik Kim
    • 2
  • Jeong Geol Na
    • 3
    Email author
  • Si Jae Park
    • 1
    Email author
  1. 1.Division of Chemical Engineering and Materials ScienceEwha Womans UniversitySeoulKorea
  2. 2.Clean Fuel DepartmentKorea Institute of Energy ResearchDaejeonKorea
  3. 3.Department of Chemical and Biomolecular EngineeringSogang UniversitySeoulKorea
  4. 4.Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuKorea

Personalised recommendations