Advertisement

Biotechnology and Bioprocess Engineering

, Volume 21, Issue 3, pp 402–407 | Cite as

Microbial production of ethanol from acetate by engineered Ralstonia eutropha

  • Hye-Mi Lee
  • Bo-Young Jeon
  • Min-Kyu OhEmail author
Research Paper

Abstract

This study was performed to produce ethanol from acetate using a genetically engineered Ralstonia eutropha. In order to genetically modify R. eutropha H16, phaCAB operon encoding metabolic pathway genes from acetyl-CoA to polyhydroxybutyrate (PHB) was deleted and adhE encoding an alcohol dehydrogenase from Escherichia coli was overexpressed for conversion of acetyl-CoA to ethanol. The resulting strain produced ethanol up to 170 mg/L when cultivated in minimal media supplemented with 5 g/L of acetate as a sole carbon source. Growth and ethanol production were optimized by adjusting nitrogen source (NH4Cl) content and repetitive feeding of acetate into the bacterial culture, by which the ethanol production was reached to approximately 350 mg/L for 84 h.

Keywords

acetate ethanol metabolic engineering Ralstonia eutropha 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, S. K., H. Chou, T. S. Ham, T. S. Lee, and J. D. Keasling (2008) Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19: 556–563.CrossRefGoogle Scholar
  2. 2.
    Balat, M. and H. Balat (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 86: 2273–2282.CrossRefGoogle Scholar
  3. 3.
    Hira, A. (2011) Sugar rush: Prospects for a global ethanol market. Energy Policy 39: 6925–6935.CrossRefGoogle Scholar
  4. 4.
    Choi, Y. I., B. G. Jung, N. C. Sung, and Y. R. Han (2015) A study on the drying characteristics from mixture of food waste and sawdust by using microwave/inner-cycle thermal-air drying process. J. Mater Cycles Waste Manag. 17: 359–368.CrossRefGoogle Scholar
  5. 5.
    Kim, W., B. G. Ryu, S. Kim, S. W. Heo, D. Kim, J. Kim, H. Jo, J. H. Kwon, and J. W. Yang (2014) Quantitative analysis of microbial community structure in two-phase anaerobic digesters treating food wastewater. Kor. J. Chem. Eng. 31: 381–385.CrossRefGoogle Scholar
  6. 6.
    Pohlmann, A., W. F. Fricke, F. Reinecke, B. Kusian, H. Liesegang, R. Cramm, T. Eitinger, C. Ewering, M. Pötter, E. Schwartz, A. Strittmatter, I. Voss, G. Gottschalk, A. Steinbüchell, B. Friedrich, and B. Bowien (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat. Biotechnol. 24: 1257–1262.CrossRefGoogle Scholar
  7. 7.
    Jeon, J. M., C. J. Brigham, Y. H. Kim, H. J. Kim, D. H. Yi, H. Kim, C. Rha, A. J. Sinskey, and Y. H. Yang (2014) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 98: 5461–5469.CrossRefGoogle Scholar
  8. 8.
    Yang, Y. H., C. J. Brigham, C. F. Budde, P. Boccazzi, L. B. Willis, M. A. Hassan, Z. A. Yusof, C. Rha, and A. J. Sinskey (2010) Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha. Appl. Microbiol. Biotechnol. 87: 2037–2045.CrossRefGoogle Scholar
  9. 9.
    Grousseau, E., J. Lu, N. Gorret, S. E. Guillouet, and A. J. Sinskey (2014) Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl. Microbiol. Biotechnol. 98: 4277–4290.CrossRefGoogle Scholar
  10. 10.
    Lu, J., C. J. Brigham, C. S. Gai, and A. J. Sinskey (2012) Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 96: 283–297.CrossRefGoogle Scholar
  11. 11.
    Muller, J., D. MacEachran, H. Burd, N. Sathitsuksanoh, C. Bi, Y. C. Yeh, T. S. Lee, N. J. Hillson, S. R. Chhabra, S.W, Singer, and H. R. Beller (2013) Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones. Appl. Microbiol. Biotechnol. 79: 4433–4439.Google Scholar
  12. 12.
    York, G. M., J. Stubbe, and A. J. Sinskey (2001) New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J. Bacteriol. 183: 2394–2397.CrossRefGoogle Scholar
  13. 13.
    Friedrich, B., C. Hogrefe, and H. G. Schlegel (1981) Naturallyoccurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J. Bacteriol. 147: 198–205.Google Scholar
  14. 14.
    Gibson, D. G., L. Young, R. Y. Chuang, J. C. Venter, C. A. Hutchison, and H. O. Smith (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Meth. 6: 343–U341.CrossRefGoogle Scholar
  15. 15.
    Hong, W. K., C. H. Kim, S. Y. Heo, L. Luo, B. R. Oh, and J. W. Seo (2010) Enhanced production of ethanol from glycerol by engineered Hansenula polymorpha expressing pyruvate decarboxylase and aldehyde dehydrogenase genes from Zymomonas mobilis. Biotechnol. Lett. 32: 1077–1082.CrossRefGoogle Scholar
  16. 16.
    Wang, Z., M. Chen, Y. Xu, S. Li, W. Lu, S. Ping, W. Zhang, and M. Lin (2008) An ethanol-tolerant recombinant Escherichia coli expressing Zymomonas mobilis pdc and adhB genes for enhanced ethanol production from xylose. Biotechnol. Lett. 30: 657–663.CrossRefGoogle Scholar
  17. 17.
    Gunasekaran, P. and K. C. Raj (1999) Ethanol fermentation technology - Zymomonas mobilis. Curr. Sci. 77: 56–68.Google Scholar
  18. 18.
    Wang, J. and J. Yu (2001) Kinetic analysis on formation of poly(3-hydroxybutyrate) from acetic acid by Ralstonia eutropha under chemically defined conditions. J. Ind. Microbiol. Biotechnol. 26: 121–126.CrossRefGoogle Scholar
  19. 19.
    Axe, D. D. and J. E. Bailey (1995) Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol. Bioeng. 47: 8–19.CrossRefGoogle Scholar
  20. 20.
    Trcek, J., N. P. Mira, and L. R. Jarboe (2015) Adaptation and tolerance of bacteria against acetic acid. Appl. Microbiol. Biotechnol. 99: 6215–6229.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea

Personalised recommendations