Advertisement

Biotechnology and Bioprocess Engineering

, Volume 21, Issue 4, pp 551–560 | Cite as

Optimization of a two-step biodiesel production process comprised of lipid extraction from blended sewage sludge and subsequent lipid transesterification

  • Pansuwan Supaporn
  • Sung Ho YeomEmail author
Research Paper

Abstract

As a preliminary research for the development of feasible and economical biodiesel production using blended sewage sludge (BSS), a sustainable and non-edible feedstock, the two-step process comprised of lipid extraction (first step) and subsequent transesterification of the lipid with methanol (second step) was optimized. The total lipid content of the free fatty acid (FFA) containing BSS was determined to be 14.5% using the Blight and Dyer method with ultrasonication pretreatment, where 40.8% of the total lipid content was FFAs. The highest lipid yield of 13.5% (g-lipid/g-dry sludge), corresponding to 92.9% extraction efficiency, was obtained using 20 mL-solvent/g-dry sludge of the total solvent mixture with a 2/1 (v/v) ratio of chloroform and methanol. In the transesterification step, an acidic catalyst (H2SO4) exhibited significantly higher performance than an alkaline catalyst (NaOH). Thus, the optimal reaction conditions were 0.2% (g/g-lipid) H2SO4, 20 mL-methanol/g-lipid, 70°C and 8 h, respectively. Although the reaction temperature was increased from 50 to 70°C, we could save H2SO4, methanol, and a reaction time by 75, 50 and 66.7%, respectively compared with previous optimal conditions suggest by others’ research. Under our optimal conditions, a biodiesel yield of 39.0% (g-biodiesel/g-lipid) and an overall yield (i.e., extraction and transesterification) of 5.3% (g-biodiesel/g-BSS) were achieved, which are substantially higher than those from others’ research.

Keywords

biodiesel blended sewage sludge two-step process lipid extraction transesterification optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Go, Y. W. and S. H. Yeom (2014) Application of pseudo-two phase partitioning bioreactor (P-TPPB) to the production of biodiesel. Bioproc. Biosyst. Eng. 37: 269–275.CrossRefGoogle Scholar
  2. 2.
    Lee, J. H., S. B. Kim, H. Y. Yoo, Y. J. Suh, G. B. Kang, W. I. Jang, J. Kang, C. Park, and S. W. Kim (2013) Biodiesel production by enzymatic process using jatropha oil and waste soybean oil. Biotechnol. Bioproc. Eng. 18: 703–708.CrossRefGoogle Scholar
  3. 3.
    Huang, J., J. Xia, W. Jiang, Y. Li, and J. Li (2015) Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresour. Technol. 180: 47–53.CrossRefGoogle Scholar
  4. 4.
    Kwon, M. H. and S. H. Yeom (2015) Optimization of one-step extraction and transesterification process for biodiesel production from the marine microalga Nannochloropsis sp. KMMCC 290 cultivated in a raceway pond. Biotechnol. Bioproc. Eng. 20: 276–283.CrossRefGoogle Scholar
  5. 5.
    Chen, L., T. Liu, W. Zhang, X. Chen, and J. Wang (2012) Biodiesel production from algae oil high in free fatty acids by twostep catalytic conversion. Bioresour. Technol. 111: 208–214.CrossRefGoogle Scholar
  6. 6.
    Al-Hamamre, Z., S. Foerster, F. Hartmann, M. Kröger, and M. Kaltschmitt (2012) Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel 96: 70–76.CrossRefGoogle Scholar
  7. 7.
    Nautiyal, P., K. A. Subramanian, and M. G. Dastidar (2014) Production and characterization of biodiesel from algae. Fuel Proc. Technol. 120: 79–88.CrossRefGoogle Scholar
  8. 8.
    Zhu, F., L. Zhao, H. Jiang, Z. Zhang, Y. Xiong, J. Qi, and J. Wang (2014) Comparison of the lipid content and biodiesel production from municipal sludge using three extraction methods. Energy Fuels 28: 5277–5283.CrossRefGoogle Scholar
  9. 9.
    Hui, L., X. Yuan, G. Zeng, D. Huang, H. Huang, J. Tong, Q. You, J. Zhang, and M. Zhou (2010) The formation of bio-oil from sludge by deoxy-liquefaction in supercritical ethanol. Bioresour. Technol. 101: 2860–2866.CrossRefGoogle Scholar
  10. 10.
    Dufreche, S., R. Hernandez, T. French, D. Sparks, M. Zappi, and E. Alley (2007) Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. J. Amer. Oil Chem. Soc. 84: 181–187.CrossRefGoogle Scholar
  11. 11.
    Ministry of environment (2013) 2030: The plan for reducing sewage sludge, and production and utilization of biogas.Google Scholar
  12. 12.
    Choi, O. K., J. S. Song, D. K. Cha, and J. W. Lee (2014) Biodiesel production from wet municipal sludge: Evaluation of in situ transesterification using xylene as a cosolvent. Bioresour. Technol. 166: 51–56.CrossRefGoogle Scholar
  13. 13.
    Tyagi, V. K. and S. L. Lo (2013) Sludge: A waste or renewable source for energy and resources recovery? Renew. Sustain. Energy Rev. 25: 708–728.CrossRefGoogle Scholar
  14. 14.
    Fytili, D. and A. Zabaniotou (2008) Utilization of sewage sludge in EU application of old and new methods-A review. Renew. Sustain. Energy Rev. 12: 116–140.CrossRefGoogle Scholar
  15. 15.
    Mondala, A., K. Liang, H. Toghiani, R. Hernandez, and T. French (2009) Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour. Technol. 100: 1203–1210.CrossRefGoogle Scholar
  16. 16.
    Olkiewicz, M., A. Fortuny, F. Stüber, A. Fabregat, J. Font, and C. Bengoa (2012) Evaluation of different sludges from WWTP as a potential source for biodiesel production. Procedia. Eng. 42: 634–643.CrossRefGoogle Scholar
  17. 17.
    Siddiquee, M. N. and S. Rohani (2011) Experimental analysis of lipid extraction and biodiesel production from wastewater sludge. Fuel Proc. Technol. 92: 2241–2251.CrossRefGoogle Scholar
  18. 18.
    Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substance. Anal. Chem. 28: 350–356.CrossRefGoogle Scholar
  19. 19.
    Bligh, E. G. and W. J. Dyer (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.CrossRefGoogle Scholar
  20. 20.
    Rukunudin, I. H., P. J. White, C. J. Bern, and T. B. Bailey (1998) A modified method for determining free fatty acids from small soybean oil sample sizes. JAOCS. 75: 563–568.Google Scholar
  21. 21.
    Tanzi, C. D., M. A. Vian, and F. Chemat (2013) New procedure for extraction of algal lipids from wet biomass: A green clean and scalable process. Bioresour. Technol. 134: 271–275.CrossRefGoogle Scholar
  22. 22.
    Olkiewicz, M., A. Fortuny, F. Stüber, A. Fabregat, J. Font, and C. Bengoa (2015) Effects of pre-treatments on the lipid extraction and biodiesel production from municipal WWTP sludge. Fuel 141: 250–257.CrossRefGoogle Scholar
  23. 23.
    Melero, J. A., R. Sánchez-Vázquez, I. A. Vasiliadou, F. Martínez Castillejo, L. F. Bautista, J. Iglesias, G. Morales, and R. Molina (2015) Municipal sewage sludge to biodiesel by simultaneous extraction and conversion of lipids. Energy Con. Manage. 103: 111–118.CrossRefGoogle Scholar
  24. 24.
    Sangaletti-Gerhard, N., M. Cea, V. Risco, and R. Navia (2015) In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts. Bioresour. Technol. 179: 63–70.CrossRefGoogle Scholar
  25. 25.
    Jeong, G. T. and D. H. Park (2015) Optimization of lipid extraction from marine green macroalgae as biofuel resources. Kor. J. Chem. Eng. 32: 2463–2467.CrossRefGoogle Scholar
  26. 26.
    Siddiquee, M. N. and S. Rohani (2011) Lipid extraction and biodiesel production from municipal sewage sludges: A review. Renew. Sustain. Energy Rev. 15: 1067–1072.CrossRefGoogle Scholar
  27. 27.
    Brown, W. H., B. L. Iverson, E. V. Anslyn, and C. S. Foote (2014) Organic chemistry. 7th ed., p. 312. Cengage learning, UK, USA.Google Scholar
  28. 28.
    Hidalgo, P., G. Ciudad, and R. Navia (2016) Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production. Bioresour. Technol. 201: 360–364.CrossRefGoogle Scholar
  29. 29.
    Huynh, L. H., N. S. Kasim, and Y. H. Ju (2010) Extraction and analysis of neutral lipids from activated sludge with and without sub-critical water pre-treatment. Bioresour. Technol. 101: 8891–8896.CrossRefGoogle Scholar
  30. 30.
    Jeon, J. M., H. W. Choi, G. C. Yoo, Y. K. Choi, K. Y. Choi, H. Y. Park, S. H. Park, Y. G. Kim, H. J. Kim, S. H. Lee, Y. K. Lee, and Y. H. Yang (2013) New mixture composition of organic solvent for efficient extraction of lipids from Chlorella vulgaris. Biomass Bioenergy 59: 279–284.CrossRefGoogle Scholar
  31. 31.
    Ramluckan, K., K. G. Moodley, and F. Bux (2014) An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel 116: 103–108.CrossRefGoogle Scholar
  32. 32.
    Ryckebosch, E., K. Muylaert, and I. Foubert (2012) Optimization of an analytical procedure for extraction of lipids from microalgae. J. Am. Oil Chem. Soc. 89: 189–198.CrossRefGoogle Scholar
  33. 33.
    Tran, H. L., Y. J. Ryu, D. H. Seong, S. M. Lim, and C. G. Lee (2013) An effective acid catalyst for biodiesel production from impure raw feedstocks. Biotechnol. Bioproc. Eng. 18: 242–247.CrossRefGoogle Scholar
  34. 34.
    Hayyan, A., Md. Z. Alam, M. E. S. Mirghani, N. A. Kabbashi, N. I. N. M. Hakmi, Y. M. Siran, and S. Tahiruddin (2011) Reduction of high content of free fatty acid in sludge palm oil via acid catalyst for biodiesel production. Fuel Proc. Technol. 92: 920–924.CrossRefGoogle Scholar
  35. 35.
    Zhou, Q., H. Zhang, F. Chang, H. Li, H. Pan, W. Xue, D. Y. Hu, and S. Yang (2015) Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil. J. Industrial Eng. Chem. 31: 385–392.CrossRefGoogle Scholar
  36. 36.
    Elsheikh, Y. A., Z. Man, and F. H. Akhtar (2013) An acidic ionic liquid-conventional alkali-catalyzed biodiesel production process. Kor J. Chem. Eng. 31: 431–435.CrossRefGoogle Scholar
  37. 37.
    Sheikh, R., M. S. Choi, J. S. Im, and Y. H. Park (2013) Study on the solid acid catalysts in biodiesel production from high acid value oil. J. Industrial Eng. Chem. 19:1413-419.CrossRefGoogle Scholar
  38. 38.
    Thanh, L. T., K. Oitsu, Y. Sadanaga, N. Takenaka, Y. Maeda, and H. Bandow (2010) A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: A practical and economical approach to produce high quality biodiesel fuel. Bioresour. Technol. 101: 5394–5401.CrossRefGoogle Scholar
  39. 39.
    Deng, X., Z. Fang, Y. H. Liu, and C. L. Yu (2011) Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy 36: 777–784.CrossRefGoogle Scholar
  40. 40.
    Macías-Sánchez, M. D., A. Robles-Medina, E. Hita-Peña, M. J. Jiménez-Callejón, L. Estéban-Cerdán, P. A. González-Moreno, and E. Molina-Grima (2015) Biodiesel production from wet microalgal biomass by direct transesterification. Fuel 150: 14–20.CrossRefGoogle Scholar
  41. 41.
    Leung, D. Y. C., B. C. P. Koo, and Y. Guo (2006) Degradation of biodiesel under different storage conditions. Bioresour. Technol. 97: 250–256.CrossRefGoogle Scholar
  42. 42.
    Wang Y., S. Feng, X. Bai, J. Zhao, and S. Xia (2016) Scum sludge as a potential feedstock for biodiesel production from wastewater treatment plants. Waste Manag. 47: 91–97.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biochemical EngineeringGangneung-Wonju National UniversityGangneungKorea

Personalised recommendations