Advertisement

Biotechnology and Bioprocess Engineering

, Volume 21, Issue 1, pp 39–45 | Cite as

Glucooligosaccharide production by Leuconostoc mesenteroides fermentation with efficient pH control, using a calcium hydroxide-sucrose solution

  • Sun Lee
  • Nguyen Thi Thanh Hanh
  • Jae-Young Cho
  • Ji Youn Kim
  • Young Hwan Moon
  • Su-Cheong Yeom
  • Geun-Joong Kim
  • Doman Kim
Research Paper

Abstract

95.3% of the sucrose in a feed batch fermentation (300 g/L) was hydrolyzed by Leuconostoc mesenteroides subp. mesenteroides NRRL B-23188 glucansucrase. Further, the glucose of sucrose formed glucooligosaccharides (GOS) of degree of polymerization (DP) over 2, together with 91.6% of the maltose (200 g/L). Lime saccharate (lime sucrate) was used to control the pH during fermentation. The GOS products had DP between 2 and 7. When Streptococcus mutans mutansucrase (0.1 U/mL) reacted with 0.1% sucrose, addition of 0.1 ~ 10% GOS to the mutansucrase reaction digest resulted in a 56 ~ 90% reduction of mutan formation. GOS also reduced E. coli (72.2%) and Salmonella sp. (over 40.0%) growth, when 2.5% GOS was used as a single carbon source, compared to growth using glucose. The calculated glycemic index and glycemic load of GOS was 8 and 1, respectively, based on a 10 g carbohydrate serving. GOS was calculated to have 2.43 kcal/g. After a glucose tolerance test was performed using C57BL/6 mice, we found that mice treated with GOS showed a 59.4% lower increase in plasma glucose than those treated with maltose.

Keywords

glucansucrase Leuconostoc mesenteroides glucooligosaccharides calcium hydroxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nguyen, T. T. H., Y. S. Seo, J. Y. Cho, S. Lee, G. J. Kim, J. W. Yoon, S. H. Ahn, K. H. Hwang, J. S. Park, T. S. Jang, and D. Kim (2015) Synthesis of oligosaccharide-containing orange juice using glucansucrase. Biotechnol. Bioproc. Eng. 20: 447–452.CrossRefGoogle Scholar
  2. 2.
    Oku, T. (1996) Oligosaccharides with beneficial health effects: A Japanese perspective. Nutr. Rev. 54: S59–66.CrossRefGoogle Scholar
  3. 3.
    Manning, T. S. and G. R. Gibson (2004) Microbial-gut interactions in health and disease. Prebiotics. Best Pract. Res. Clin. Gastroenterol. 18: 287–298.CrossRefGoogle Scholar
  4. 4.
    Monchois, V., R. M. Willemot, and P. Monsan (1999) Glucansucrases: Mechanism of action and structure–function relationships. FEMS Microbiol. Rev. 23: 131–151.CrossRefGoogle Scholar
  5. 5.
    Ngo, D. N., M. M. Kim, and S. K. Kim (2008) Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohyd. Polym. 74: 228–234.CrossRefGoogle Scholar
  6. 6.
    Marionneau, S., A. Cailleau-Thomas, J. Rocher, B. Le Moullac-Vaidye, N. Ruvoen, M. Clement, and J. Le Pendu (2001) ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 83: 565–573.CrossRefGoogle Scholar
  7. 7.
    Kang, H. K., T. T. H. Nguyen, H. N. Jeong, M. E. Park, and D. Kim (2014) Molecular cloning and characterization of a novel glucansucrase from Leuconostoc mesenteroides subsp. mesenteroides LM34. Biotechnol. Bioproc. Eng. 19: 605–612.CrossRefGoogle Scholar
  8. 8.
    Robyt, J. F. and T. F. Walseth (1978) The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase. Carbohyd. Res. 61: 433–445.CrossRefGoogle Scholar
  9. 9.
    Cote, G. L. and T. D. Leathers (2005) A method for surveying and classifying Leuconostoc spp. glucansucrases according to strain-dependent acceptor product patterns. J. Ind. Microbiol. Biotechnol. 32: 53–60.CrossRefGoogle Scholar
  10. 10.
    Holt, S. M., C. M. Miller-Fosmore, and G. L. Cote (2005) Growth of various intestinal bacteria on alternansucrase-derived oligosaccharides. Lett. Appl. Microbiol. 40: 385–390.CrossRefGoogle Scholar
  11. 11.
    Moon, Y. H., L. Madsen, C.-H. Chung, D. Kim, and D. F. Day (2014) Lime application for the efficient production of nutraceutical glucooligosaccharides from Leuconostoc mesenteroides NRRL B-742 (ATCC13146). J. Ind. Microbiol. Biotechnol. 42: 279–285.CrossRefGoogle Scholar
  12. 12.
    Yoon, S.-H., R. Mukerjea, and J. F. Robyt (2003) Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohyd. Res. 338: 1127–1132.CrossRefGoogle Scholar
  13. 13.
    Moore, R., G. Richards, and A. Story (2008) Electrical conductivity as an indicator of water chemistry and hydrologic process. Stream. Water. Manag. Bull. 11: 25–29.Google Scholar
  14. 14.
    Nguyen, T. T., J. Y. Cho, Y. S. Seo, H. J. Woo, H. K. Kim, G. J. Kim, D. Y. Jhon, and D. Kim (2014) Production of a low calorie mandarin juice by enzymatic conversion of constituent sugars to oligosaccharides and prevention of insoluble glucan formation. Biotechnol. Lett. 37: 711–716.CrossRefGoogle Scholar
  15. 15.
    Kang, H. K., A. Kimura, and D. Kim (2011) Bioengineering of Leuconostoc mesenteroides glucansucrases that gives selected bond formation for glucan synthesis and/or acceptor-product synthesis. J. Agr. Food Chem. 59: 4148–4155.CrossRefGoogle Scholar
  16. 16.
    Ziar, H., P. Gérard, and A. Riazi (2014) Effect of prebiotic carbohydrates on growth, bile survival and cholesterol uptake abilities of dairy-related bacteria. J. Sci. Food Agr. 94: 1184–1190.CrossRefGoogle Scholar
  17. 17.
    Menezes, E. W., F. Grande, E. B. Giuntini, T. V. Lopes, M. C. Dan, S. B. Prado, B. D. Franco, U. R. Charrondière, and F. M. Lajolo (2015) Impact of dietary fiber energy on the calculation of food total energy value in the Brazilian Food Composition Database. Food Chem. 193: 128–133CrossRefGoogle Scholar
  18. 18.
    U.S Food and Drug Administration, Submission of manuscript. http://FDA.govGoogle Scholar
  19. 19.
    da Silva, I. M., M. C. Rabelo, and S. Rodrigues (2014) Cashew juice containing prebiotic oligosaccharides. J. Food Sci. Technol. 51: 2078–2084.CrossRefGoogle Scholar
  20. 20.
    Chung, C.-H. (2002) A potential nutraceutical from Leuconostoc mesenteroides B-742 (ATCC 13146); Production and Properties. Ph. D. Thesis. University of Lousiana, LA, USA.Google Scholar
  21. 21.
    Patel, S., D. Kothari, and A. Goyal (2011) Purification and characterization of an extracellular dextransucrase from Pediococcus pentosaceus isolated from the soil of North East India. Food Technol. Biotech. 49: 297–303.Google Scholar
  22. 22.
    Seo, E. S., D. Kim, J. F. Robyt, D. F. Day, D. W. Kim, H. J. Park, and H. J. Park (2004) Modified oligosaccharides as potential dental plaque control materials. Biotechnol. Prog. 20: 1550–1554.CrossRefGoogle Scholar
  23. 23.
    Chung, C. and D. Day (2002) Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): A potential prebiotic. J. Ind. Microbiol. Biotechnol. 29: 196–199.CrossRefGoogle Scholar
  24. 24.
    Mullie, P., A. Koechlin, M. Boniol, P. Autier, and P. Boyle (2015) Relation between breast cancer and high glycemic index or glycemic load: A meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 56: 152–159.CrossRefGoogle Scholar
  25. 25.
    Wang, S., J. Wang, H. Mou, B. Luo, and X. Jiang (2015) Inhibition of Adhesion of Intestinal Pathogens (Escherichia coli, Vibrio cholerae, Campylobacter jejuni, and Salmonella Typhimurium) by Common Oligosaccharides. Foodborne Pathog. Dis. 12: 360–365.CrossRefGoogle Scholar
  26. 26.
    Bharti, S. K., S. Krishnan, A. Kumar, A. K. Gupta, A. K. Ghosh, and A. Kumar (2014) Mechanism-based antidiabetic activity of Fructo-and isomalto-oligosaccharides: Validation by in vivo, in silico and in vitro interaction potential. Proc. Biochem. 50: 317–327.CrossRefGoogle Scholar
  27. 27.
    Andrikopoulos, S., A. R. Blair, N. Deluca, B. C. Fam, and J. Proietto (2008) Evaluating the glucose tolerance test in mice. Am. J. Physiol-Endoc. M. 295: e1323–E1332.Google Scholar
  28. 28.
    Ludwig, D. S. (2002) The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. J. Am Med. Assoc. 287: 2414–2423CrossRefGoogle Scholar
  29. 29.
    S.U.G.I.R Datafiles of Sydney University Glycemic Index Database, Submission of manuscript. http://glycemicindex.comGoogle Scholar
  30. 30.
    Chao, T., Z. PeiNa, Q. LingYu, X. Lin, J. ZhangJun, and L. XiuTing (2014) Progress of research and application in food industry of functional oligosaccharides. J. Food Safety Quality. 5: 123–130.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sun Lee
    • 1
    • 2
  • Nguyen Thi Thanh Hanh
    • 1
  • Jae-Young Cho
    • 1
  • Ji Youn Kim
    • 5
  • Young Hwan Moon
    • 3
  • Su-Cheong Yeom
    • 1
    • 5
  • Geun-Joong Kim
    • 4
  • Doman Kim
    • 1
    • 5
  1. 1.Institutes of Green Bio Sciences & TechnologySeoul National UniversityGangwon-doKorea
  2. 2.School of Biological Sciences and TechnologyChonnam National UniversityGwangjuKorea
  3. 3.Audubon Sugar InstituteLouisiana State University Agricultural CenterSaint GabrielUSA
  4. 4.Department of Biological Sciences, College of Natural SciencesChonnam National UniversityGwangjuKorea
  5. 5.Graduate School of International Agricultural TechnologyGangwon-doKorea

Personalised recommendations