Advertisement

Biotechnology and Bioprocess Engineering

, Volume 20, Issue 4, pp 708–713 | Cite as

Structural characterization and temperature-dependent production of C17-fengycin B derived from Bacillus amyloliquefaciens subsp. plantarum BC32-1

  • Jiyoung Nam
  • Min Young Jung
  • Pyoung Il Kim
  • Hyang Burm Lee
  • Si Wouk Kim
  • Chul Won Lee
Research Paper

Abstract

Cyclic lipopeptides were produced by Bacillus amyloliquefaciens subsp. plantarum strain BC32-1 that was isolated from yellow loess soil in the Jeonnam province of South Korea. Several lipopeptides were isolated from the bacteria using organic solvent extraction and reverse-phase high-performance liquid chromatography (RP-HPLC). Purified iturin-, surfactin-, and fengycin-type lipopeptides were identified using liquid chromatographymass spectrometry (LC-MS) analysis. Among the lipopeptides, C17-fengycin B showed strong antifungal activity against the phytopathogenic fungus, Fusarium oxysporum f. sp. radicis-lycopersici, and then the fengycin was further characterized by UV, Fourier transform-infrared spectroscopy (FT-IR), and LC-MS/MS analyses. C17-fengycin B was highly produced at quantities of up to 15 µg/mL at 37°C, whereas little amount of the fengycin was produced at 25°C. Purified C17-fengycin B inhibited mycelial growth of F. oxysporum with a minimal inhibitory concentration of 50 µg/mL. This study suggests that C17-fengycin B is a major antifungal component produced by the BC32-1 strain that could be used as an environmentally friendly agent to control the phytopathogenic F. oxysporum.

Keywords

antifungal lipopeptide Bacillus amyloliquefaciens subsp. plantarum biocontrol biosurfactant fengycin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Compant, S., B. Duffy, J. Nowak, C. Clement, and E. A. Barka (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951–4959.CrossRefGoogle Scholar
  2. 2.
    Ongena, M. and P. Jacques (2008) Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115–125.CrossRefGoogle Scholar
  3. 3.
    Raaijmakers, J. M., I. de Bruijn, and M. J. de Kock (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: Diversity, activity, biosynthesis, and regulation. Mol. Plant Microbe Interact. 19: 699–710.CrossRefGoogle Scholar
  4. 4.
    Katz, E. and A. L. Demain (1977) The peptide antibiotics of Bacillus: Chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41: 449–474.Google Scholar
  5. 5.
    Schneider, T., A. Muller, H. Miess, and H. Gross (2014) Cyclic lipopeptides as antibacterial agents — potent antibiotic activity mediated by intriguing mode of actions. Int. J. Med. Microbial. 304: 37–43.CrossRefGoogle Scholar
  6. 6.
    Mondol, M. A. M., H. J. Shin, and M. T. Islam (2013) Diversity of secondary metabolites from marine Bacillus Species: Chemistry and biological activity. Mar. Drugs. 11: 2846–2872.CrossRefGoogle Scholar
  7. 7.
    Bernal, G., A. Illanes, and L. Ciampi (2002) Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp with antibiotic activity against plant pathogenic agents. Electron. J. Biotechnol. 5: 12–20.CrossRefGoogle Scholar
  8. 8.
    Delcambe, L., F. Peypoux, F. Besson, M. Guinand, and G. Michel (1977) Structure of iturin and iturin-like substances [proceedings]. Biochem. Soc. T. 5: 1122–1124.CrossRefGoogle Scholar
  9. 9.
    Peypoux, F., J. M. Bonmatin, and J. Wallach (1999) Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51: 553–563.CrossRefGoogle Scholar
  10. 10.
    Raaijmakers, J. M., I. De Bruijn, O. Nybroe, and M. Ongena (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbial. Rev. 34: 1037–1062.CrossRefGoogle Scholar
  11. 11.
    Vanittanakom, N., W. Loeffler, U. Koch, and G. Jung (1986) Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29–3. J. Antibiot. 39: 888–901.CrossRefGoogle Scholar
  12. 12.
    Deleu, M., M. Paquot, and T. Nylander (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys. J. 94: 2667–2679.CrossRefGoogle Scholar
  13. 13.
    Romano, A., D. Vitullo, A. Di Pietro, G. Lima, and V. Lanzotti (2011) Antifungal lipopeptides from Bacillus amyloliquefaciens strain BO7. J. Nat. Prod. 74: 145–151.CrossRefGoogle Scholar
  14. 14.
    Chen, X. H., A. Koumoutsi, R. Scholz, A. Eisenreich, K. Schneider, I. Heinemeyer, B. Morgenstern, B. Voss, W. R. Hess, O. Reva, H. Junge, B. Voigt, P. R. Jungblut, J. Vater, R. Süssmuth, H. Liesegang, A. Strittmatter, G. Gottschalk, and R. Borriss (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007–1014.CrossRefGoogle Scholar
  15. 15.
    Arguelles-Arias, A., M. Ongena, B. Halimi, Y. Lara, A. Brans, B. Joris, and P. Fickers (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 8: 63.CrossRefGoogle Scholar
  16. 16.
    Zhao, P., C. Quan, Y. Wang, J. Wang, and S. Fan (2014) Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. Spinaciae. J. Basic. Microbiol. 54: 448–456.CrossRefGoogle Scholar
  17. 17.
    Nam, J., H. Yun, J. Kim, P. I. Kim, S. W. Kim, H. B. Lee, J. I. Kim, and C. W. Lee (2015) Isolation and NMR analysis of antifungal Fengycin A and B from Bacillus amyloliquefaciens subsp. plantarum BC32–1. Bull. Kor. Chem. Soc. 36: 1316–1321.CrossRefGoogle Scholar
  18. 18.
    Benitez, L. B., R. V. Velho, M. P. Lisboa, L. F. Medina, and A. Brandelli (2010) Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J. Microbiol. 48: 791–797.CrossRefGoogle Scholar
  19. 19.
    Pecci, Y., F. Rivardo, M. G. Martinotti, and G. Allegrone (2010) LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. J. Mass Spectrom. 45: 772–778.CrossRefGoogle Scholar
  20. 20.
    Szczechura, W., M. Staniaszek, and H. Habdas (2013) Fusarium oxysporum f. sp. radicis-lycopersici — the cause of fusarium crown and root rot in tomato cultivation. J. Plant. Prot. Res. 53: 172–176.CrossRefGoogle Scholar
  21. 21.
    Kamilova, F., L. V. Kravchenko, A. I. Shaposhnikov, N. Makarova, and B. Lugtenberg (2006) Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol. Plant Microbe Interact. 19: 1121–1126.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of ChemistryChonnam National UniversityGwangjuKorea
  2. 2.Bio Control Research CenterJBFJeonnamKorea
  3. 3.Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
  4. 4.Department of Environmental EngineeringChosun UniversityGwangjuKorea

Personalised recommendations