Biotechnology and Bioprocess Engineering

, Volume 20, Issue 4, pp 685–693 | Cite as

Gene knockout identification for metabolite production improvement using a hybrid of genetic ant colony optimization and flux balance analysis

  • Abdul Hakim Mohamed Salleh
  • Mohd Saberi Mohamad
  • Safaai Deris
  • Sigeru Omatu
  • Florentino Fdez-Riverola
  • Juan Manuel Corchado
Research Paper

Abstract

The increasing demand of biochemical supply for various industries has spurred the development of metabolic engineering to find the optimal design of the microbial cell factories. Traditional method of chemical synthesis using the natural producer leads to the production far below their theoretical maximums. Gene knockout strategy is then introduced to improve the metabolite production. To aid the process, many computational algorithms have been developed to design the optimal microbial strain as cell factories to increase the production of the desired metabolite. However, due to the size of the genome scale model of the microbial strain, finding the optimal combination of genes to be knocked out is not an easy task. In this paper, we propose a hybrid of Genetic Ant Colony Optimization (GACO) and Flux Balance Analysis (FBA) namely GACOFBA to find the optimal gene knockout that increase the production of the target metabolite. Using E. coli and S. cerevisiae genome scale model, we test our proposed hybrid algorithm to increase the production of four different metabolites. By comparing with the results from existing method OptKnock as well as the conventional Ant Colony Optimization (ACO), the results show that our proposed hybrid algorithm able to identify the best set of genes and increase the production while maintaining the optimal growth rate.

Keywords

gene knockout metabolites production flux balance analysis genetic ant colony optimization hybrid algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joyce, A. R., B. Ø. Palsson, P. Fu, and S. Panke (2009) In silico genome-scale metabolic models: The constraint-based approach and its application. pp. 193–233. John Wiley & Sons Inc., Hoboken, NJ, USA.Google Scholar
  2. 2.
    Song, B., E. Buyuktahtakin, N. Bandyopadhyay, S. Ranka, and T. Kahveci (2011) Identifying enzyme knockout strategies on multiple enzyme associations. Bioinformatics — Trends and Methodol. 162: 353–370.Google Scholar
  3. 3.
    Mahadevan, R., A. P. Burgard, I. Famili, S. V. Dien, and H. S. Christophe (2005) Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals. Biotechnol. Bioproc. Eng. 10: 408–417.CrossRefGoogle Scholar
  4. 4.
    Price, N. D., J. A. Papin, C. H. Schilling, and B. O. Palsson (2003) Genome-scale microbial in silico models: The constraints-based approach. Trends Biotechnol. 21: 162–169.CrossRefGoogle Scholar
  5. 5.
    Park, J. M., T. Y. Kim, and S. Y. Lee (2009) Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol. Adv. 27: 978–988.Google Scholar
  6. 6.
    Orth, J. D., I. Thiele, and B. Ø. Palsson (2010) What is flux balance analysis? Nat. Computat. Biol. 28: 245–248.Google Scholar
  7. 7.
    Reed, J. L. and B. O. Palsson (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J. Bacteriol. 185: 2692–2699.CrossRefGoogle Scholar
  8. 8.
    Burgard, A. P., P. Pharkya and C. D. Maranas (2003) Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84: 647–657.CrossRefGoogle Scholar
  9. 9.
    Holland, J. H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, Michigan.Google Scholar
  10. 10.
    Dorigo, M., V. Maniezzo, and A. Colorni (1996) Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics—Part B 26: 29–41.CrossRefGoogle Scholar
  11. 11.
    Pham, D. T., A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim, and M. Zaidi (2006) The bees algorithm — A novel tool for complex optimisation problems. pp. 454–461. Proceedings of IPROMS 2006 Conference. July 3–14. Cardiff, UK.Google Scholar
  12. 12.
    Patil, K. R., I. Rocha, J. Forster, and J. Nielsen (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform. 6: 308.CrossRefGoogle Scholar
  13. 13.
    Hwang, S. F. and R. S. He (2006) A hybrid real-parameter genetic algorithm for function optimization. Adv. Eng. Inform. 20: 7–21.CrossRefGoogle Scholar
  14. 14.
    Xue, X. D., X. D. Cheng, B. Xu, H. L. Wang, and C. P. Jiang (2010) The basic principle and application of ant colony optimization algorithm. pp. 358–360. Artificial Intelligence and Education (ICAIE) International Conference. Oct 29–30. Hangzhou, China.Google Scholar
  15. 15.
    Kauffman, K. J., P. Prakash, and J. S. Edward (2003) Advances in flux balance analysis. Curr. Opinion Biotechnol. 14: 491–496.CrossRefGoogle Scholar
  16. 16.
    Varma, A. and B. O. Palsson (1994) Metabolic flux balancing: Basic concept, scientific and practical use. Bio/Technol. 12: 994–998.CrossRefGoogle Scholar
  17. 17.
    Nemati, S., M. E. Basiri, N. Ghasem-Aghaee, and M. H. Aghdam (2009) A novel ACO–GA hybrid algorithm for feature selection in protein function prediction. Expert. Syst. Applicat. 36: 12086–12094.CrossRefGoogle Scholar
  18. 18.
    Feist, A. M., C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce, P. D. Karp, L. J. Broadbelt, V. Hatzimanikatis, and B. Ø. Palsson (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3: 121.CrossRefGoogle Scholar
  19. 19.
    Mo, M. L., B. Ø. Palsson, and M. J. Herrgård (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 3: 37.CrossRefGoogle Scholar
  20. 20.
    Schellenberger, J., R. Que, R. M. Fleming, I. Thiele, J. D. Orth, A. M. Feist, D. C. Zielinski, A. Bordbar, N. E. Lewis, S. Rahmanian, J. Kang, D. R. Hyduke, and B. Ø. Palsson (2011) Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0. Nat. Protoc. 6: 1290–1307.CrossRefGoogle Scholar
  21. 21.
    Suman, M., J. Clomburg, and R. Gonzalez (2010) Escherichia coli strains engineered for homofermentative production of d-lactic acid from glycerol. Appl. Environ. Microbiol. 76: 4237–4336.Google Scholar
  22. 22.
    Zhu, J. and K. Shimizu (2005) Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metab. Eng. 7: 104–115.CrossRefGoogle Scholar
  23. 23.
    Yang, Y., G. N. Benett, and K. San (1999) Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli. Biotechnol. Bioeng. 65: 291–297.CrossRefGoogle Scholar
  24. 24.
    Zhao, J., T. Baba, H. Mori, and K. Shimizu (2004) Effect of zwf gene knockout on the metabolism of Escherichia coli grown on glucose or acetate. Metab. Eng. 6: 164–174.CrossRefGoogle Scholar
  25. 25.
    Arikawa, Y., T. Kuroyanagi, M. Shimosake, H. Muratsubaki, K. Enomoto, R. Kodaira, and M. Okazaki (1999) Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. J. Biosci. Bioeng. 87: 28–26.CrossRefGoogle Scholar
  26. 26.
    Park, S., P. Cotter, and R. P. Gunsalus (1995) Regulation of malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme availability. J. Bacteriol. 177: 6652–6656.Google Scholar
  27. 27.
    Zimenkov, D., A. Gulevich, A. Skorokhodova, I. Biriukova, Y. Kozlov, and S. Mashko (2005) Escherichia Coli ORF ybhE is pgl gene encoding 6-phosphogluconolactonase (EC 3.1.1.31) that has no homology with known 6PGLs from other organisms. FEMS Microbiol. Lett. 244: 275–280.CrossRefGoogle Scholar
  28. 28.
    Richard, J. D., L. Eshantha, J. Salgado, and J. E. Hewlins (2002) The catabolism of amino acid to long chain and complex alcohols in Saccharomyces cerevisiae. J. Biol. Chem. 278: 8028–8034.CrossRefGoogle Scholar
  29. 29.
    Leskovac, V., S. Triviæ, and D. Perièin (2002) The three zinccontaining alcohol dehydrgenase from baker’s yeast, Saccharomyces cerevisiae. FEMS Yeast Res. 2: 481–494.Google Scholar
  30. 30.
    Lee, S. J., D. Lee, T. Y. Kim, B. H. Kim, J. Lee, and S. Y. Lee (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and In Silico gene knockout simulation. Appl. Environ. Microbiol. 71: 7880–7887.CrossRefGoogle Scholar
  31. 31.
    Cotter, P. A., V. Chepuri, R. B. Gennis, and R. P. Gunsalus (1990) Cytochrome o(cyoABCD) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product. J. Bacteriol. 172: 6333–6338.Google Scholar
  32. 32.
    Janausch, I. G., O. B. Kim, and G. Unden (2001) DctA-and Dcuindependent transport of succinate in Escherichia coli: Contribution of diffusion and of alternative carriers. Arch. Microbiol. 176: 224–230.CrossRefGoogle Scholar
  33. 33.
    Compos-Bermudez, V. A., F. P. Bologna, C. S. Andreo, and M. F. Drincovich (2010) Functional dissection of Escherichia coli phosphotransacetylase structural domains and analysis of key compounds involved in activity regulation. FEBS J. 277: 1957–1966.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Abdul Hakim Mohamed Salleh
    • 1
  • Mohd Saberi Mohamad
    • 1
  • Safaai Deris
    • 2
  • Sigeru Omatu
    • 1
  • Florentino Fdez-Riverola
    • 3
  • Juan Manuel Corchado
    • 4
    • 5
  1. 1.Artificial Intelligence and Bioinformatics Research Group, Faculty of ComputingUniversiti Teknologi MalaysiaUTM Skudai, JohorMalaysia
  2. 2.Department of Electronics, Information and Communication EngineeringOsaka Institute of Technology535-8585Japan
  3. 3.Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/nUniversity of VigoOurenseSpain
  4. 4.Biomedical Research Institute of Salamanca/BISITE Research GroupUniversity of SalamancaSalamancaSpain
  5. 5.Osaka Institute of TechnologyOsakaJapan

Personalised recommendations