Advertisement

Biotechnology and Bioprocess Engineering

, Volume 20, Issue 4, pp 634–642 | Cite as

Investigations in fungal solubilization of coal: Mechanisms and significance

  • M. J. GhaniEmail author
  • M. I. Rajoka
  • Kalsoom Akhtar
Review Paper

Abstract

Fungi are the most important organisms which are involved in the degradation and solubilization of different types of coal. The mechanism of coal degradation and solubilization involves different oxidizing and nonoxidizing enzymes, chelators, alkaline substances and surfactants. This review intends to highlight the advancements in the biotechnological processing of coal and summarizes the recent knowledge regarding the mechanisms involved in fungal solubilization of coal especially the low rank lignite coal which is a natural raw material of enormous amounts and of great value.

Keywords

lignite coal fungi solubilization humic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schilling, H. D. (1997) Long-term perspectives for coal-energy needs versus environment protection. Erdol. Erdgas Kohle 113: 346–348.Google Scholar
  2. 2.
    Juwarkar, A. A. and H. P. Jambhulkar (2008) Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Biores.Technol. 99: 4732–4741.CrossRefGoogle Scholar
  3. 3.
    Lumpkin, R. E. (1988) Recent progress in the direct liquification of coal. Science 239: 873–877.CrossRefGoogle Scholar
  4. 4.
    Dong, L. H., Q. Yuan, and H. L. Yuan (2006) Changes of chemical properties of humic acids from crude and fungal transformed lignite. Fuel 85: 2402–2407.CrossRefGoogle Scholar
  5. 5.
    Kulikova, N. A., E. V. Stepanova, and O. V. Koroleva (2005) Mitigating Activity of humic substances: Direct influence on biota, in Use of humic substances to remediate polluted environments: From theory to practice. NATO Science Series: IV. Environ. Earth Sci. 52: 285–309.Google Scholar
  6. 6.
    Hatcher, P. G., I. A. Breger, N. Szeverenyi, and G. E. Maciel (1982) Nuclear magnetic resonance studies of ancient buried wood-II. Observations on the origin of coal from lignite to bituminous coal. Organic Geochem. 4: 9–18.CrossRefGoogle Scholar
  7. 7.
    Fakoussa, R. M. and M. Hofrichter (1999) Biotechnology and microbiology of coal degradation. Appl. Microbiol. Biotechnol. 52: 25–40.CrossRefGoogle Scholar
  8. 8.
    Hatcher, P. G., I. A. Breger, N. Szeverenyi and G. E. Maciel (1982) Nuclear magnetic resonance studies of ancient buried wood-II. Observations on the origin of coal from lignite to bituminous coal. Organic Geochem. 4: 9–18.CrossRefGoogle Scholar
  9. 9.
    The New Encyclopaedia Britannica (1992) Encyclopaedia Britannica Inc., Chicago.Google Scholar
  10. 10.
    Xu, X. C., C. H. Chen, H. Y. Qi, R. He, C. F. You, and G. M. Xiang (2000) Development of coal combustion pollution control for SO2 and NOx in China. Fuel Proc. Technol. 62: 153–160.CrossRefGoogle Scholar
  11. 11.
    European Commission (1995) Coal can be green. EC Directorate General for Energy, Thermie Programme, Brussels.Google Scholar
  12. 12.
    PETC Review (1991) Liquid transportation fuels from coal: In PETC review. Pittsburgh Energy Technology Center, Office of Fossil Energy, United States Department of Energy, Pittsburgh.Google Scholar
  13. 13.
    Machnikowska, H., K. Pawelec, and A. Podgoska (2002) Microbial degradation of low rank coals. Fuel Proc. Technol. 77–78: 17–23.CrossRefGoogle Scholar
  14. 14.
    Fakoussa, R. M. (1981) Coal as a substrate for microorganisms: Investigation with microbial conversion of national coals. Ph.D. Thesis, Friedrich-Wilhelms University, Bonn.Google Scholar
  15. 15.
    Cohen, M. S. and P. D. Gabriele (1982) Degradation of coal by the fungi polyporous versicol or and poria placenta. Appl. Environ. Microbiol. 44: 23–27.Google Scholar
  16. 16.
    Faison, B. D. (1992) In Biotransformations of Low Rank Coals. pp. 1–26. CRC Press, Boca Raton, FL.Google Scholar
  17. 17.
    Quigley, D. R. (1992) In Biotransformations of Low Rank Coals. pp. 27–63. CRC Press, Boca Raton, FL.Google Scholar
  18. 18.
    Laborda, F., I. F. Monistrol, N. Luna, and M. Fernandez (1999) Processes of liquefaction/solubilization of Spanish coals by microorganisms. Appl. Microbiol. Biotechnol. 52: 49–56.CrossRefGoogle Scholar
  19. 19.
    Hofrichter, M. and R. Fakoussa (2001) Microbial degradation and modification of coal, in Lignin, humic substances and coal. pp. 393–427. vol 1. Wiley–VCH, Weinheim.Google Scholar
  20. 20.
    Grinhut, T., Y. Hadar, and Y. Chen (2007) Degradation and transformation of humic substances by saprotrophic fungi: Processes and mechanisms. Fungal Biol. Rev. 21: 179–189.CrossRefGoogle Scholar
  21. 21.
    Kraus, U., M. Schmidt, and Ch. Lohrer (2006) A numerical model to simulate smouldering fires in bulk materials and dust deposits. J. Loss Prevent. Proc. Indus. 19: 218–226.CrossRefGoogle Scholar
  22. 22.
    Fuchtenbusch, A. and A. Steinbuchel (1999) Biosynthesis of polyhydroxyalkanoates from low-rank coal liquefaction products by Pseudomonas oleovorans and Rhodococcus ruber. Appl. Microbiol. Biotechnol. 52: 91–95.CrossRefGoogle Scholar
  23. 23.
    Kirk, T. K. and R. L. Farrell (1987) Enzymatic “Combustion: The microbial degradation of lignin. Annual Rev. Microbiol. 41: 465–505.CrossRefGoogle Scholar
  24. 24.
    Zimmermann, W. (1990) Degradation of lignin by bacteria. J. Biotechnol. 13: 119–130.CrossRefGoogle Scholar
  25. 25.
    Spiker, J. K., D. L. Crawford, and E. C. Thiel (1992) Oxidation of phenolic and non-phenolic substrates by the lignin peroxidase of Streptomyces viridosporus T7 A. Appl. Microbiol. Biotechnol. 37: 518–523.CrossRefGoogle Scholar
  26. 26.
    Kulikova, N. A., E. V. Stepanova, and O. V. Koroleva (2005) Mitigating activity of humic substances: Direct influence on biota. Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice. NATO Science Series 52: 285–309.CrossRefGoogle Scholar
  27. 27.
    Yuan, H. L., J. S. Yang, F. Q. Wang, and W. X. Chen (2006) Degradation and solubilization of Chinese lignite by Penicillium sp. P6. Appl. Biochem. Microbiol. 42: 52–55.CrossRefGoogle Scholar
  28. 28.
    Crawford, D. L. and R. K. Gupta (1992) Microbial depolymerization of coal, in microbial transformation of low rank coals. pp. 171–211. CRC Press, Boca Raton, Florida.Google Scholar
  29. 29.
    Strandberg, G. W. and S. N. Lewis (1987) A method to enhance the microbial liquefaction of lignite coals. Biotechnol. Bioeng. Symp. 17: 153.Google Scholar
  30. 30.
    Cohen, M. S., W. C. Bowers, H. Aronson, and E. T. Gray (1987) Cell-free solubilization of coal by Polyporus versicolor. Appl. Environ. Microbiol. 53: 2840–2843.Google Scholar
  31. 31.
    Priest, F. G. (1984) Extracellular enzymes: In Aspects of microbiology. pp. 1–16. Van Nostrand Reinhold, U. K. Co. Ltd. Berkshire, England.Google Scholar
  32. 32.
    Boyle, D. C., R. B. Kropp, and D. I. Reid (1992) Solubilization and mineralization of lignin by white rot fungi. Appl. Environ. Microbiol. 58: 3217–3224.Google Scholar
  33. 33.
    Stewart, D. L., B. L. Thomas, R. M. Bean, and J. K. Fredrickson (1990) Colonization and degradation of oxidized bituminous and lignite coals by fungi. J. Indus. Microbiol. 6: 53–58.CrossRefGoogle Scholar
  34. 34.
    Ralph, J. P. and D. E. A. Catcheside (1994) Decolourisation and depolymerisation of solubilized low-rank coal by the white rot basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 42: 536–542.CrossRefGoogle Scholar
  35. 35.
    Ralph, J. P., I. A. Graham, and D. E. A. Catcheside (1996) Extracellular oxidases and the transformation of solubilized low rank coal by wood-rot fungi. Appl. Microbiol. Biotechnol. 46: 226–232.CrossRefGoogle Scholar
  36. 36.
    Willmann, G. and R. M. Fakussaa (1997) Biological bleaching of water soluble macromolecules by a basidiomycete strain. Appl. Microbiol. Biotechnol. 47: 95–101.CrossRefGoogle Scholar
  37. 37.
    Gupta, R. K., L. A. Deobald, and D. L. Crawford (1990) Depolymerization of lignite coal by Pseudomonas strain 07. Appl. Biochem. Biotechnol. 24/25: 899–907.CrossRefGoogle Scholar
  38. 38.
    Faison, B. D. and S. N. Lewis (1989) Production of coal-solubilizing activity by Paecilomyces sp. during submerged growth in defined liquid media. Appl. Biochem. Biotechnol. 20/21: 743–752.CrossRefGoogle Scholar
  39. 39.
    Holker, U. (1998) Mechanismen der verflussigung von rheinischer Braunkohle durch Pilze—Ein Vergleich der Deuteromyceten Fusarium oxysporum und Trichoderma atroviride. Ph.D. Thesis, University of Bonn.Google Scholar
  40. 40.
    Gotz, G. K. E., P. Frost and R. M. Fakoussa (1997) Investigation on the bisolubilization of brown coal using pyrolysis-gas chromatography-mass spectrometry and in situ-alkylation with tetraethylammonium hydroxide (TEAH). In: Ziegler, A., Heek, K. H. V., Klein, J., Wanzl, W (Eds) Proceedings of the 9th International Conference on Coal Science, 7–12, Essen Germany, Vol 3. Druck, Essen. pp. 1669–1672.Google Scholar
  41. 41.
    Klein, J. (1999) Biological processing of fossil fuels. Appl. Microbiol. Biotechnol. 52: 2–15.CrossRefGoogle Scholar
  42. 42.
    Cohen, M. S. and P. D. Gabriele (1982) Degradation of coal by the fungi Polyporus versicolor and Poria monticola. Appl. Environ. Microbiol. 44: 23–27.Google Scholar
  43. 43.
    Ward, B. (1985) Lignite-degrading fungi isolated from a weathered outcrop. Systematic Appl. Microbiol. 6: 236–238.CrossRefGoogle Scholar
  44. 44.
    Scott, C. D., G. W. Strandberg, and S. N. Lewis (1986) Microbial solubilization of coal. Biotechnol. Prog. 2: 131–139.CrossRefGoogle Scholar
  45. 45.
    Gupta, K. R., K. J. Spiker,, and D. L. Crawford (1988) Biotransformation of coal by ligninolytic Streptomyces. Can. J. Microbiol. 34: 667–674.CrossRefGoogle Scholar
  46. 46.
    Quigley, D. R., B. Ward, D. L. Grawfordd, H. J. Hatcher, and P. R. Dugar (1989) Evidence that microbially produced alkaline materials are involved in coal biosolubilization. Appl. Biochem. Biotechnol. 20/21: 753–763.CrossRefGoogle Scholar
  47. 47.
    Faison, B. D. and S. N. Lewis (1989) Production of coal solubilizing activity by Paecilomyces sp. During submerged growth in defined liquid media. Appl. Biochem. Biotechnol. 20: 743–752.CrossRefGoogle Scholar
  48. 48.
    Raeder, U. and P. Broda (1984) Comparison of the lignin-degrading white-rot fungi Phanerochaete chrysosporium and Sporotrichum pulverulentum at the DNA level. Curr. Genet. 8: 499–506.CrossRefGoogle Scholar
  49. 49.
    Strandberg, G. W. and S. N. Lewis (1987) The Solubilization of Coal by an Extracellular Product from Streptomyces Setonii 75Vi2. J. Indus. Microbiol. 1: 371–375.CrossRefGoogle Scholar
  50. 50.
    Achi, O. K. (1994) Growth and coal-solubilizing activity of Penicillium simplicissimum on coal-related aromatic compounds. Biores. Technol. 48: 53–57.CrossRefGoogle Scholar
  51. 51.
    Torzilli, A. P. and J. D. Isbister (1994) Comparison of coal solubilization by bacteria and fungi. Biodegradation 5: 55–62.Google Scholar
  52. 52.
    Polman, J. K., D. L. Stoner, and K. M. Delezene-Briggs (1994) Bioconversion of coal, lignin and dimethoxybenzyl alcohol by Penicillium citrinum. J. Indus. Microbiol. 13: 292–299.CrossRefGoogle Scholar
  53. 53.
    Hölker, U. S. Ludwig, T. Scheel, and M. Höfer (1999) Mechanisms of coal solubilization by the deuteromycetes Trichoderma atroviride and Fusarium oxysporum. Appl. Microbiol. Biotechnol. 52: 57–59.CrossRefGoogle Scholar
  54. 54.
    Hofrichter, M. and W. Fritche (1997) Depolymerization of low rank coal by extracellular fungal enzyme systems. II. The ligninolytic enzymes of the coal-humic-acid-degrading fungus Nematoloma frowardii b19.Appl. Microbiol. Biotechnol. 47: 419–424.CrossRefGoogle Scholar
  55. 55.
    Hofrichter, M. and W. Fritsche (1997) Depolymerization of lowrank coal by extracellular fungal enzyme systems. 2. The ligninolytic enzymes of the coal-humic acid depolymerizing fungus Nematoloma forwardii b19. Fuel Energ. Abst. 38: 296.Google Scholar
  56. 56.
    Fakoussa, R. M. and P. J. Frost (1999) In vivo-decolorization of coalderived humic acids by laccase-excreting fungus Trametes versicolor. Appl. Microbiol. Biotechnol. 52: 60–65.CrossRefGoogle Scholar
  57. 57.
    Gotz, G. K. E. and R. M. Fakoussa (1999) Fungal biosolubilization of Rhenish brown coal monitored by Curie point pyrolysis/gas chromatography/mass spectrometry using tetraethylammonium hydroxide. Appl. Microbiol. Biotechnol. 52: 41–48.CrossRefGoogle Scholar
  58. 58.
    Wunderwald, U., G. Kreisel, M. Braun, M. Schulz, C. Jager, and M. Hofrichter (2000) Formation and degradation of a synthetic humic acid derived from 3-fluorocatechol. Appl. Microbiol. Biotechnol. 53: 441–446.CrossRefGoogle Scholar
  59. 59.
    Yanagi, Y., S. Hamaguchi, H. Tamaki, T. Suzuki, H. Otsuka, and N. Fujitake (2003) Relation of chemical properties of soil humic acids to decolorization by white rot Fungus-Coriolus consors. Soil Sci. Plant Nutrri. 49: 201–206.CrossRefGoogle Scholar
  60. 60.
    Steffen, K. T., A. Hatakka, and M. Hofrichter (2002) Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila. Appl. Environ. Microbiol. 68: 3442–3448.CrossRefGoogle Scholar
  61. 61.
    Yanagi, Y., H. Tamaki, H. Otsuka, and N. Fujitake (2002) Comparison of decolorization by microorganisms of humic acids with different 12C NMR properties. Soil Biol. Biochem. 34: 729–731.CrossRefGoogle Scholar
  62. 62.
    Belcarz, A., G. Ginalska, and T. Kornillowicz-Kowalska (2005) Extracellular enzyme activities of Bjerkandera adusta R59 soil strain, capable of daunomycin and humic acids degradation. Appl. Microbiol. Biotechnol. 68: 686–694.CrossRefGoogle Scholar
  63. 63.
    Kluczek-Turpeinen, B., P. Maijala, M. Tuomela, M. Hofrichter, and A Hatakka (2005) Endoglucanase activity of compost-dwelling fungus Paecilomyces inflatus is stimulated by humic acids and other low molecular mass Aromatics. World J. Microbiol. Biotechnol. 21: 1603–1609.CrossRefGoogle Scholar
  64. 64.
    Rezácová, V. and M. Gryndler (2006) Fluorescence spectroscopy: A tool to characterize humic substances in soil colonized by microorganisms? Folia Microbiol. 51: 215–221.CrossRefGoogle Scholar
  65. 65.
    Igbinigie, E. E., S. Atkins, Y. van Breugel, S. van Dyke, M. T. Davies-Coleman, and P. Rose (2008) Fungal biodegradation of hard coal by a newly reported isolate, Neosartorya fischeri. Biotechnol. J. 3: 1407–1416.CrossRefGoogle Scholar
  66. 66.
    Lynch, M. D. J. and R. G. Thorn (2006) Diversity of basidiomycetes in Michigan agricultural soils. Appl. Environ. Microbiol. 72: 7050–7056.CrossRefGoogle Scholar
  67. 67.
    Kersten, P. and D. Cullen (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet. Biol. 44: 77–87.CrossRefGoogle Scholar
  68. 68.
    Zavarzina, A. G., A. A. Leontievsky, L. A. Golovleva, and S. Y. Trofimov (2004) Biotransformation of soil humic acids by blue laccase of Panus tigrinus 8/18: An In vitro study. Soil Biol. Biochem. 36: 359–369.CrossRefGoogle Scholar
  69. 69.
    Steffen, K. T., A. Hatakka, and M. Hofrichter (2002) Degradation of humic acids by the litter-decomposing Basidiomycete Collybia dryophila. Appl. Environ. Microbiol. 68: 3442–3448.CrossRefGoogle Scholar
  70. 70.
    Hölker, U., S. Ludwig, T. Scheel, and M. Höfer (1999) Mechanisms of coal solubilization by the deuteromycetesTrichoderma atroviride and Fusarium oxysporum. Appl. Microbiol. Biotechnol. 52: 57–59.CrossRefGoogle Scholar
  71. 71.
    Tao, X. X., H. Chen, K. Y. Shi, and Z. P. Lv (2010) Identification and biological characteristics of a newly isolated fungus Hypocrea lixii and its role in lignite bioconversion. African J. Microbiol. Res. 4: 1842–1847.Google Scholar
  72. 72.
    Igbinigie, E. E., C. C. Z. Mutambanengwe, and P. D. Rose (2010) Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere. Biotechnol J. 5: 292–303.CrossRefGoogle Scholar
  73. 73.
    Yin, S., X. Tao, and K. Shi (2011) The role of surfactants in coal bio-solubilisation. Fuel Proc. Technol. 92: 1554–1559.CrossRefGoogle Scholar
  74. 74.
    Cohen, M. S., K. A. Feldman, C. S. Brown, and E. T. Gray (1990) Isolation and identification of the coal solubilizing agent produced by Trametes versicolor. Appl. Environ. Microbiol. 56: 3285–3294.Google Scholar
  75. 75.
    Dutton, M. V., C. S. Evans, P. T. Atkey, and D. A. Wood (1993) Oxalate production by Basidiomycetes, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 39: 5–10.CrossRefGoogle Scholar
  76. 76.
    Barr, D. B. and S. D. Aust (1994) Mechanisms white rot fungi use to degrade pollutants. Environ. Sci. Technol. 28: 79A–87A.CrossRefGoogle Scholar
  77. 77.
    Holker, U. and M. Hofer (2002) Solid substrate fermentation of lignite by the coal solubilizing mould, Trichoderma atroviride, in a new type of bioreactor. Biotechnol. Lett. 2: 1643–1645.CrossRefGoogle Scholar
  78. 78.
    Silva-Stenico, M. E., C. J. Vengadajellum, H. A. Janjua, S. T. Harrison, S. G. Burton, and D. A. Cowan (2007) Degradation of low rank coal by Trichoderma atroviride ES11. J. Indus. Microbiol. Biotechnol. 34: 625–631.CrossRefGoogle Scholar
  79. 79.
    Perez, J., J. Munoz-Dorado, D. L. Rubia, and T. Martinez (2002) Biodegrdation and biological treatments of cellulose, hemicelluloses and lignin: An overview. Int. Microbiol. 5: 53–63.CrossRefGoogle Scholar
  80. 80.
    Hofrichter, M. (2002) Lignin conversion by manganese peroxidase (MnP). Enz. Microbiol. Technol. 30: 454–466.CrossRefGoogle Scholar
  81. 81.
    Baldrian, P. (2006) Fungal laccases — occurrence and properties. FEMS Microbiol. Rev. 30: 215–242.CrossRefGoogle Scholar
  82. 82.
    Kabe, Y., T. Osawa, A. Ishihara, and T. Kabe (2005) Decolorization of coal humic acid by extracellular enzymes produced by White-rot fungi. Coal Prep. 25: 211–220.CrossRefGoogle Scholar
  83. 83.
    Conesa, A., P. J. Punt, and C. A. M. Hondel (2002) Fungal peroxidases: Molecular aspects and applications. J. Biotechnol. 93: 143–158.CrossRefGoogle Scholar
  84. 84.
    Allard, B. (2006) A comparative study on the chemical composition of humic acids from forest soil, agricultural soil and lignite deposit; Bound lipid, carbohydrate and amino acid distributions. Geoderma. 130: 77–96.CrossRefGoogle Scholar
  85. 85.
    Selvi, A. V., R. Banerjee, L. C. Ram, and G. Singh (2009) Biodepolymerization studies of low rank Indian coals. World J. Microbiol. Biotechnol. 25: 1713–1720.CrossRefGoogle Scholar
  86. 86.
    Muller-Wegener, U. (1988) Interaction of humic substances with biota, in Humic Substances and Their Role in the Environment. pp. 179–192. John Wiley & Sons, NY, USA.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.National Institute for Biotechnology and Genetic Engineering (NIBGE)FaisalabadPakistan
  2. 2.Government College UniversityFaisalaadPakistan

Personalised recommendations