Biotechnology and Bioprocess Engineering

, Volume 20, Issue 5, pp 894–900 | Cite as

Flavin mononucleotide mediated microbial fuel cell in the presence of Shewanella putrefaciens CN32 and iron-bearing mineral

  • Yoonhwa Lee
  • Sungjun Bae
  • ChungMan Moon
  • Woojin Lee
Research Paper

Abstract

We investigate the workability of electron transfer mediators (ETMs) for the enhanced microbial fuel cell (MFC) operated by Shewanella putrefaciens CN32. In open-circuit, natural ETMs showed 128 ~ 166% of enhancement in the difference of electrical potential compared to that without ETMs (0.41 V), while MFC with synthetic ETMs achieved 200 ~ 250% of enhancement, showing a liner relationship between the electric potentials and ETMs’ redox potentials (R2 = 0.91). Especially, flavin mononucleotide (FMN), the most effective ETM for Shewanella-MFC operation, exhibited the highest potential (0.547 V) and power density (20.28 mW/m2) and generated the maximum current (0.285 mA). The addition of conductive iron-bearing minerals (hematite: 26.27 mW/m2, lepidocrocite: 25.83 mW/m2) enhanced power density of FMN-MFC, while no significant enhancement was observed when soluble iron source (ferric citrate) was added. In addition, MFC containing hematite showed the maximum current (0.37 mA) with 30.8 % of coulombic efficiency.

Keywords

microbial fuel cell Shewanella putrefaciens CN32 electron transfer mediator iron-bearing minerals flavin mononucleotide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Logan, B. E. and J. M. Regan (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbial. 14: 512–518.CrossRefGoogle Scholar
  2. 2.
    Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim and B. H. Kim (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enz. Microb. Tech. 30: 145–152.CrossRefGoogle Scholar
  3. 3.
    Min, B., S. Cheng, and B. E. Logan (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 39: 1675–1686.CrossRefGoogle Scholar
  4. 4.
    Liu, Z. D., J. Lian, Z. W. Du, and H. R. Li (2006) Construction of sugar-based microbial fuel cells by dissimilatory metal reduction bacteria. Chin. J. Biotechnol. 22: 131–137.CrossRefGoogle Scholar
  5. 5.
    Liu, Z. D., Z. W. Du, J. Lian, X. Y. Zhu, S. H. Li, and H. R. Li (2007) Improving energy accumulation of microbial fuel cells by metabolism regulation using Rhodoferax ferrireducens as biocatalyst. Lett. Appl. Microbiol. 44: 393–398.CrossRefGoogle Scholar
  6. 6.
    Du, Z., H. Li, and T. Gu (2007) A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25: 464–482.CrossRefGoogle Scholar
  7. 7.
    Logan, B. E. (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7: 375–381.CrossRefGoogle Scholar
  8. 8.
    Kim, B. H., T. Ikeda, H. S. Park, H. J. Kim, M. S. Hyun, K. Kano, K. Takagi, and H. Tatsumi (1999) Electrochemical activity of an Fe (III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol. Tech. 13: 475–478.CrossRefGoogle Scholar
  9. 9.
    Kim, H. J., M. S. Hyun, I. S. Chang, and B. H. Kim (1999) A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 365–367.Google Scholar
  10. 10.
    Myers, C. R. and J. M. Myers (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174: 3429–3438.Google Scholar
  11. 11.
    El-Naggar, M. Y., G. Wanger, K. M. Leung, T. D. Yuzvinsky, G. Southam, J. Yang, W. M. Lau, K. H. Nealson, and Y. A. Gorby (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA. 107: 18127–18131.CrossRefGoogle Scholar
  12. 12.
    Wu, C. Y., L. Zhuang, S. G. Zhou, Y. Yuan, T. Yuan, and F. B. Li (2012) Humic substance-mediated reduction of iron (III) oxides and degradation of 2, 4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5. Microb. Biotechnol. 6: 141–149.CrossRefGoogle Scholar
  13. 13.
    Aeschbacher, M., D. Vergari, R. P. Schwarzenbach, and M. Sander (2011) Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environ. Sci. Technol. 45: 8385–8394.CrossRefGoogle Scholar
  14. 14.
    Sun, J., W. Li, Y. Li, Y. Hu, and Y. Zhang (2013) Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell. Bioresour. Technol. 142: 407–414.CrossRefGoogle Scholar
  15. 15.
    Park, D. and J. Zeikus (2002) Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biot. 59: 58–61.CrossRefGoogle Scholar
  16. 16.
    Ringeisen, B. R., E. Henderson, P. K. Wu, J. Pietron, R. Ray, B. Little, J. C. Biffinger, and J. M. Jones-Meehan (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 40: 2629–2634.CrossRefGoogle Scholar
  17. 17.
    Feng, C., L. Ma, F. Li, H. Mai, X. Lang, and S. Fan (2010) A polypyrrole/anthraquinone-2, 6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens. Bioelectron. 25: 1516–1520.CrossRefGoogle Scholar
  18. 18.
    Bae, S. and W. Lee (2013) Biotransformation of lepidocrocite in the presence of quinones and flavins. Geochim. Cosmochim. Acta. 114: 144–155.CrossRefGoogle Scholar
  19. 19.
    Bae, S. and W. Lee (2014) Influence of riboflavin on nanoscale zero-valent iron reactivity during the degradation of carbon tetrachloride. Environ. Sci. Technol. 48: 2368–2376.CrossRefGoogle Scholar
  20. 20.
    Bae, S., Y. Lee, M. J. Kwon, and W. Lee (2014) Riboflavinmediated RDX transformation in the presence of Shewanella putrefaciens CN32 and lepidocrocite. J. Hazard. Mater. 274: 24–31.CrossRefGoogle Scholar
  21. 21.
    Marsili, E., D. B. Baron, I. D. Shikhare, D. Coursolle, J. A. Gralnick, and D. R. Bond (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA. 105: 3968–3973.CrossRefGoogle Scholar
  22. 22.
    Von Canstein, H., J. Ogawa, S. Shimizu, and J. R. Lloyd (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microb. 74: 615–623.CrossRefGoogle Scholar
  23. 23.
    Anderson, R. F. (1983) Energetics of the one-electron reduction steps of riboflavin, FMN and FAD to their fully reduced forms. BBA-Bioenergetics 722: 158–162.CrossRefGoogle Scholar
  24. 24.
    Heering, H. A. and W. R. Hagen (1996) Complex electrochemistry of flavodoxin at carbon-based electrodes: results from a combination of direct electron transfer, flavin-mediated electron transfer and comproportionation. J. Electroanal. Chem. 404: 249–260.CrossRefGoogle Scholar
  25. 25.
    Yamashita, M., S. S. Rosatto, and L. T. Kubota (2002) Electrochemical comparative study of riboflavin, FMN and FAD immobilized on the silica gel modified with zirconium oxide. J. Brazil Chem. Soc. 13: 635–641.CrossRefGoogle Scholar
  26. 26.
    Garjonyte, R., A. Malinauskas, and L. Gorton (2003) Investigation of electrochemical properties of FMN and FAD adsorbed on titanium electrode. Bioelectrochemi. 61: 39–49.CrossRefGoogle Scholar
  27. 27.
    Scott, D. T., D. M. McKnight, E. L. Blunt-Harris, S. E. Kolesar, and D. R. Lovley (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humicsreducing microorganisms. Environ. Sci. Technol. 32: 2984–2989.CrossRefGoogle Scholar
  28. 28.
    Nevin, K. P. and D. R Lovley (2002) Mechanisms for Fe (III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19: 141–159.CrossRefGoogle Scholar
  29. 29.
    Pandit, S., S. Khilari, S. Roy, D. Pradhan, and D. Das (2014) Improvement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered Microbial Fuel Cell: Effect of different anodic operating conditions. Bioresour. Technol. 166: 451–457.CrossRefGoogle Scholar
  30. 30.
    Mayhew, S. G. (1999) The effects of pH and semiquinone formation on the oxidation–reduction potentials of flavin mononucleotide. Eur. J. Biochem. 265: 698–702.CrossRefGoogle Scholar
  31. 31.
    Bird, L. J., V. Bonnefoy, and D. K. Newman (2011) Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 19: 330–340.CrossRefGoogle Scholar
  32. 32.
    Kato, S., K. Hashimoto, and K. Watanabe (2012) Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl. Acad. Sci. USA. 109: 10042–10046.CrossRefGoogle Scholar
  33. 33.
    Nakamura, R., F. Kai, A. Okamoto, G. J. Newton, and K. Hashimoto (2009) Self-constructed electrically conductive bacterial networks. Angew. Chem. Int. Edit. 48: 508–511.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yoonhwa Lee
    • 1
  • Sungjun Bae
    • 2
  • ChungMan Moon
    • 3
  • Woojin Lee
    • 1
  1. 1.Department of Civil and Environmental EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Institute for Nuclear Waste DisposalKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Biomass and Waste Energy LaboratoryKorea Institute of Energy ResearchDaejeonKorea

Personalised recommendations