Biotechnology and Bioprocess Engineering

, Volume 20, Issue 4, pp 623–633 | Cite as

Optimization of the secretion pathway for heterologous proteins in Bacillus subtilis

  • Sunghoon Park
  • Wolfgang SchumannEmail author
Review Paper


Secretion of homologous proteins in large amounts has been accomplished for many proteins, but no efficient secretion system has been described so far which can be generally applied for heterologous proteins. The objective of this review article is to compare the three major secretion pathways in E. coli and in B. subtilis and review the stages of conversion of the secreted proteins from the unfolded polypeptide chains into the correctly folded and fully active protein. Furthermore, bottlenecks in the production of heterologous proteins and the ways to resolve them are briefly discussed.


Sec- Tat- SRP-pathway signal peptide thiol oxidoreductase protease Bacillus subtilis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Westers, L., H. Westers, and W. J. Quax (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: A biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 1694: 299–310.CrossRefGoogle Scholar
  2. 2.
    Blattner, F. R., G. Plunkett III, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao (1997) The complete genome sequence of Escherichia coli K-12. Sci. 277: 1453-NIL_0012.Google Scholar
  3. 3.
    Kunst, F., N. Ogasawara, and I. Moszer (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390: 249–256.CrossRefGoogle Scholar
  4. 4.
    Sorensen, H. P. and K. K. Mortensen (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J.Biotechnol. 115: 113–128.CrossRefGoogle Scholar
  5. 5.
    Rosano, G. L. and E. A. Ceccarelli (2014) Recombinant protein expression in Escherichia coli: Advances and challenges. Front Microbiol. 5: 172.Google Scholar
  6. 6.
    Simonen, M. and I. Palva (1993) Protein secretion in Bacillus species. Microbiol. Rev. 57: 109–137.Google Scholar
  7. 7.
    Palva, I. (1982) Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis. Gene 19: 81–87.CrossRefGoogle Scholar
  8. 8.
    Fahnestock, S. R. and K. E. Fisher (1986) Expression of the staphylococcal protein A gene in Bacillus subtilis by gene fusions utilizing the promoter from a Bacillus amyloliquefaciens -amylase gene. J. Bacteriol. 165: 796–804.Google Scholar
  9. 9.
    Bolhuis, A., H. Tjalsma, H. E. Smith, A. De Jong, R. Meima, G. Venema, S. Bron, and J. M. Van Dijl (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis. Appl. Environ. Microbiol. 65: 2934–2941.Google Scholar
  10. 10.
    Bendtsen, J. D., H. Nielsen, G. Von Heijne, and S. Brunak (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol 340: 783–795.CrossRefGoogle Scholar
  11. 11.
    Low, K. O., M. N. Muhammad, and I. R. Md (2013) Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl. Microbiol. Biotechnol. 97: 3811–3826.CrossRefGoogle Scholar
  12. 12.
    Zanen, G., E. N. Houben, R. Meima, H. Tjalsma, J. D. Jongbloed, H. Westers, B. Oudega, J. Luirink, J. M. Van Dijl, and W. J. Quax (2005) Signal peptide hydrophobicity is critical for early stages in protein export by Bacillus subtilis. FEBS J. 272: 4617–4630.CrossRefGoogle Scholar
  13. 13.
    Akita, M., S. Sasaki, S. Matsuyama, and S. Mizushima (1990) SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli. J. Biol. Chem. 265: 8164–8169.Google Scholar
  14. 14.
    Dalbey, R. E. and G. Von Heijne (1992) Signal peptidases in prokaryotes and eukaryotes—A new protease family. Trends Biochem. Sci. 17: 474–478.CrossRefGoogle Scholar
  15. 15.
    Briggs, M. S., D. G. Cornell, R. A. Dluhy, and L. M. Gierasch (1986) Conformations of signal peptides induced by lipids suggest initial steps in protein export. Science 233: 206–208.CrossRefGoogle Scholar
  16. 16.
    Paetzel, M., A. Karla, N. C. Strynadka, and R. E. Dalbey (2002) Signal peptidases. Chem. Rev. 102: 4549–4580.CrossRefGoogle Scholar
  17. 17.
    Van Roosmalen, M. L., N. Geukens, J. D. Jongbloed, H. Tjalsma, J. Y. Dubois, S. Bron, J. M. Van Dijl, and J. Anne (2004) Type I signal peptidases of Gram-positive bacteria. Biochim. Biophys. Acta 1694: 279–297.CrossRefGoogle Scholar
  18. 18.
    Berks, B. C. (1996) A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol. 22: 393–404.CrossRefGoogle Scholar
  19. 19.
    Ng, D. T., J. D. Brown, and P. Walter (1996) Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J. Cell Biol. 134: 269–278.CrossRefGoogle Scholar
  20. 20.
    Dalbey, R. E., M. O. Lively, S. Bron, and J. M. Van Dijl (1997) The chemistry and enzymology of the type I signal peptidases. Protein Sci. 6: 1129–1138.CrossRefGoogle Scholar
  21. 21.
    Dalbey, R. E. and A. Kuhn (2000) Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins. Annu. Rev. Cell Dev. Biol. 16: 51–87.CrossRefGoogle Scholar
  22. 22.
    Fu, L. L., Z. R. Xu, W. F. Li, J. B. Shuai, P. Lu, and C. X. Hu (2007) Protein secretion pathways in Bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnol. Adv. 25: 1–12.CrossRefGoogle Scholar
  23. 23.
    Chatzi, K. E., M. F. Sardis, A. Economou, and S. Karamanou (2014) SecA-mediated targeting and translocation of secretory proteins. Biochim. Biophys. Acta 1843: 1466–1474.CrossRefGoogle Scholar
  24. 24.
    Rusch, S. L. and D. A. Kendall (2007) Interactions that drive Sec-dependent bacterial protein transport. Biochem. 46: 9665–9673.CrossRefGoogle Scholar
  25. 25.
    Fekkes, P. and A. J. Driessen (1999) Protein targeting to the bacterial cytoplasmic membrane. Microbiol. Mol. Biol. Rev. 63: 161–173.Google Scholar
  26. 26.
    Van der Sluis, E. O. and A. J. Driessen (2006) Stepwise evolution of the Sec machinery in Proteobacteria. Trends Microbiol. 14: 105–108.CrossRefGoogle Scholar
  27. 27.
    Xu, Z., J. D. Knafels, and K. Yoshino (2000) Crystal structure of the bacterial protein export chaperone sec B. Nat. Struct. Biol. 7: 1172–1177.CrossRefGoogle Scholar
  28. 28.
    Randall, L. L., S. J. Hardy, T. B. Topping, V. F. Smith, J. E. Bruce, and R. D. Smith (1998) The interaction between the chaperone SecB and its ligands: Evidence for multiple subsites for binding. Protein Sci. 7: 2384–2390.CrossRefGoogle Scholar
  29. 29.
    Palmer, T. and B. C. Berks (2012) The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 10: 483–496.Google Scholar
  30. 30.
    Patel, R., S. M. Smith, and C. Robinson (2014) Protein transport by the bacterial Tat pathway. Biochim. Biophys. Acta 1843: 1620–1628.CrossRefGoogle Scholar
  31. 31.
    Berks, B. C., T. Palmer, and F. Sargent (2003) The Tat protein translocation pathway and its role in microbial physiology. Adv. Microb. Physiol. 47: 187–254.CrossRefGoogle Scholar
  32. 32.
    Jack, R. L., F. Sargent, B. C. Berks, G. Sawers, and T. Palmer (2001) Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J. Bacteriol. 183: 1801–1804.CrossRefGoogle Scholar
  33. 33.
    Berks, B. C., T. Palmer, and F. Sargent (2005) Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr. Opin. Microbiol. 8: 174–181.CrossRefGoogle Scholar
  34. 34.
    Driessen, A. J. and N. Nouwen (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77: 643–667.CrossRefGoogle Scholar
  35. 35.
    Saraogi, I. and S. O. Shan (2014) Co-translational protein targeting to the bacterial membrane. Biochim. Biophys. Acta 1843: 1433–1441.CrossRefGoogle Scholar
  36. 36.
    van Wely, K. H., J. Swaving, R. Freudl, and A. J. Driessen (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol. Rev. 25: 437–454.CrossRefGoogle Scholar
  37. 37.
    Antelmann, H., H. Tjalsma, B. Voigt, S. Ohlmeier, S. Bron, J. M. Van Dijl, and M. Hecker (2001) A proteomic view on genomebased signal peptide predictions. Genome Res. 11: 1484–1502.CrossRefGoogle Scholar
  38. 38.
    Tjalsma, H., A. Bolhuis, J. D. Jongbloed, S. Bron, and J. M. Van Dijl (2000) Signal peptide-dependent protein transport in Bacillus subtilis: A genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 64: 515–547.CrossRefGoogle Scholar
  39. 39.
    Yang, C. K., H. E. Ewis, X. Zhang, C. D. Lu, H. J. Hu, Y. Pan, A. T. Abdelal, and P. C. Tai (2011) Nonclassical protein secretion by Bacillus subtilis in the stationary phase is not due to cell lysis. J. Bacteriol. 193: 5607–5615.CrossRefGoogle Scholar
  40. 40.
    Müller, J. P., J. Ozegowski, S. Vettermann, J. Swaving, K. H. van Wely, and A. J. Driessen (2000) Interaction of Bacillus subtilis CsaA with SecA and precursor proteins. Biochem. J. 348: 367–373.CrossRefGoogle Scholar
  41. 41.
    Shapova, Y. A. and M. Paetzel (2007) Crystallographic analysis of Bacillus subtilis CsaA. Acta Crystallogr. D. Biol Crystallogr. 63: 478–485.CrossRefGoogle Scholar
  42. 42.
    Kawaguchi, S., J. Müller, D. Linde, S. Kuramitsu, T. Shibata, Y. Inoue, D. G. Vassylyev, and S. Yokoyama (2001) The crystal structure of the ttCsaA protein: An export-related chaperone from Thermus thermophilus. EMBO J. 20: 562–569.CrossRefGoogle Scholar
  43. 43.
    Müller, J., F. Walter, J. M. Van Dijl, and D. Behnke (1992) Suppression of the growth and export defects of an Escherichia coli secA(Ts) mutant by a gene cloned from Bacillus subtilis. Mol. Gen. Genet. 235: 89–96.CrossRefGoogle Scholar
  44. 44.
    Vitikainen, M., H. L. Hyyryläinen, A. Kivimaki, V. P. Kontinen, and M. Sarvas (2005) Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation. J. Appl. Microbiol. 99: 363–375.CrossRefGoogle Scholar
  45. 45.
    Lyon, W. R., C. M. Gibson, and M. G. Caparon (1998) A role for Trigger Factor and an Rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes. EMBO J. 17: 6263–6275.CrossRefGoogle Scholar
  46. 46.
    Wu, S. C., R. Q. Ye, X. C. Wu, S. C. Ng, and S. -L. Wong (1998) Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones. J. Bacteriol. 180: 2830–2835.Google Scholar
  47. 47.
    Herbort, M., M. Klein, E. H. Manting, A. J. Driessen, and R. Freudl (1999) Temporal expression of the Bacillus subtilis secA gene, encoding a central component of the preprotein translocase. J. Bacteriol. 181: 493–500.Google Scholar
  48. 48.
    Barnett, J. P., R. T. Eijlander, O. P. Kuipers, and C. Robinson (2008) A minimal Tat system from a gram-positive organism: A bifunctional TatA subunit participates in discrete TatAC and TatA complexes. J. Biol. Chem. 283: 2534–2542.CrossRefGoogle Scholar
  49. 49.
    van der Ploeg, R., J. P. Barnett, N. Vasisht, V. J. Goosens, D. C. Pother, C. Robinson, and J. M. Van Dijl (2011) Salt sensitivity of minimal twin arginine translocases. J. Biol. Chem. 286: 43759–43770.CrossRefGoogle Scholar
  50. 50.
    Jongbloed, J. D. H., U. Martin, H. Antelmann, M. Hecker, H. Tjalsma, G. Venema, S. Bron, J. M. Van Dijl, and J. Müller (2000) TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J. Biol. Chem. 275: 41350–41357.CrossRefGoogle Scholar
  51. 51.
    Monteferrante, C. G., J. Baglieri, C. Robinson, and J. M. Van Dijl (2012) TatAc, the third TatA subunit of Bacillus subtilis, can form active twin-arginine translocases with the TatCd and TatCy subunits. Appl. Environ. Microbiol. 78: 4999–5001.CrossRefGoogle Scholar
  52. 52.
    Nakamura, K., S. Yahagi, T. Yamazaki, and K. Yamane (1999) Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J. Biol. Chem. 274: 13569–13576.CrossRefGoogle Scholar
  53. 53.
    Yamazaki, T., S. Yahagi, K. Nakamura, and K. Yamane (1999) Depletion of Bacillus subtilis histone-like protein, HBsu, causes defective protein translocation and induces upregulation of small cytoplasmic RNA. Biochem. Biophys. Res. Commun. 258: 211–214.CrossRefGoogle Scholar
  54. 54.
    Nakamura, K., Y. Imai, A. Nakamura, and K. Yamane (1992) Small cytoplasmic RNA of Bacillus subtilis: Functional relationship with human signal recognition particle 7S RNA and Escherichia coli 4.5S RNA. J. Bacteriol. 174: 2185–2192.Google Scholar
  55. 55.
    Zanen, G., H. Antelmann, R. Meima, J. D. Jongbloed, M. Kolkman, M. Hecker, J. M. Van Dijl, and W. J. Quax (2006) Proteomic dissection of potential signal recognition particle dependence in protein secretion by Bacillus subtilis. Proteomics. 6: 3636–3648.CrossRefGoogle Scholar
  56. 56.
    Gouridis, G., S. Karamanou, I. Gelis, C. G. Kalodimos, and A. Economou (2009) Signal peptides are allosteric activators of the protein translocase. Nature 462: 363–367.CrossRefGoogle Scholar
  57. 57.
    Saito, A., Y. Hizukuri, E. Matsuo, S. Chiba, H. Mori, O. Nishimura, K. Ito, and Y. Akiyama (2011) Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria. Proc. Natl. Acad. Sci. U.S.A 108: 13740–13745.CrossRefGoogle Scholar
  58. 58.
    Brown, M. S. and J. L. Goldstein (1997) The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331–340.CrossRefGoogle Scholar
  59. 59.
    Sakai, J., E. A. Duncan, R. B. Rawson, X. Hua, M. S. Brown, and J. L. Goldstein (1996) Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 85: 1037–1046.CrossRefGoogle Scholar
  60. 60.
    Brown, M. S., J. Ye, R. B. Rawson, and J. L. Goldstein (2000) Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans. Cell 100: 391–398.CrossRefGoogle Scholar
  61. 61.
    Koide, K., S. Maegawa, K. Ito, and Y. Akiyama (2007) Environment of the active site region of RseP, an Escherichia coli regulated intramembrane proteolysis protease, assessed by sitedirected cysteine alkylation. J. Biol. Chem. 282: 4553–4560.CrossRefGoogle Scholar
  62. 62.
    Heinrich, J., T. Lunden, V. P. Kontinen, and T. Wiegert (2008) The Bacillus subtilis ABC transporter EcsAB influences intramembrane proteolysis through RasP. Microbiol. 154: 1989–1997.CrossRefGoogle Scholar
  63. 63.
    Walton, T. A. and M. C. Sousa (2004) Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell 15: 367–374.CrossRefGoogle Scholar
  64. 64.
    Maynard, J., E. J. Adams, M. Krogsgaard, K. Petersson, C. W. Liu, and K. C. Garcia (2005) High-level bacterial secretion of single-chain alphabeta T-cell receptors. J. Immunol. Methods 306: 51–67.CrossRefGoogle Scholar
  65. 65.
    Bothmann, H. and A. Pluckthun (1998) Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotechnol. 16: 376–380.CrossRefGoogle Scholar
  66. 66.
    Duguay, A. R. and T. J. Silhavy (2004) Quality control in the bacterial periplasm. Biochim. Biophys. Acta 1694: 121–134.CrossRefGoogle Scholar
  67. 67.
    Kontinen, V. P., P. Saris, and M. Sarvas (1991) A gene (prsA) of Bacillus subtilis involved in a novel, late stage of protein export. Mol. Microbiol. 5: 1273–1283.CrossRefGoogle Scholar
  68. 68.
    Vitikainen, M., T. Pummi, U. Airaksinen, E. Wahlström, H. Y. Wu, M. Sarvas, and V. P. Kontinen (2001) Quantitation of the capacity of the secretion apparatus and requirement for PrsA in growth and secretion of -amylase in Bacillus subtilis. J. Bacteriol. 183: 1881–1890.CrossRefGoogle Scholar
  69. 69.
    Vitikainen, M., I. Lappalainen, R. Seppala, H. Antelmann, H. Boer, S. Taira, H. Savilahti, M. Hecker, M. Vihinen, M. Sarvas, and V. P. Kontinen (2004) Structure-function analysis of PrsA reveals roles for the parvulin-like and flanking N-and C-terminal domains in protein folding and secretion in Bacillus subtilis. J. Biol. Chem. 279: 19302–19314.CrossRefGoogle Scholar
  70. 70.
    Collet, J. F. and J. C. Bardwell (2002) Oxidative protein folding in bacteria. Mol. Microbiol. 44: 1–8.CrossRefGoogle Scholar
  71. 71.
    Dutton, R. J., D. Boyd, M. Berkmen, and J. Beckwith (2008) Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl. Acad. Sci. USA 105: 11933–11938.CrossRefGoogle Scholar
  72. 72.
    Hatahet, F., D. Boyd, and J. Beckwith (2014) Disulfide bond formation in prokaryotes: History, diversity and design. Biochim. Biophys. Acta 1844: 1402–1414.CrossRefGoogle Scholar
  73. 73.
    Ishihara, T., H. Tomita, Y. Hasegawa, N. Tsukagoshi, H. Yamagata, and S. Udaka (1995) Cloning and characterization of the gene for a protein thiol-disulfide oxidoreductase in Bacillus brevis. J. Bacteriol. 177: 745–749.Google Scholar
  74. 74.
    Kouwen, T. R., G. A. van der, R. Dorenbos, T. Winter, H. Antelmann, M. C. Plaisier, W. J. Quax, J. M. Van Dijl, and J. Y. Dubois (2007) Thiol-disulphide oxidoreductase modules in the low-GC Gram-positive bacteria. Mol. Microbiol. 64: 984–999.CrossRefGoogle Scholar
  75. 75.
    Kouwen, T. R. and J. M. Van Dijl (2009) Interchangeable modules in bacterial thiol-disulfide exchange pathways. Trends Microbiol. 17: 6–12.CrossRefGoogle Scholar
  76. 76.
    Meima, R., C. Eschevins, S. Fillinger, A. Bolhuis, L. W. Hamoen, R. Dorenbos, W. J. Quax, J. M. Van Dijl, R. Provvedi, I. Chen, D. Dubnau, and S. Bron (2002) The bdbDC operon of Bacillus subtilis encodes thiol-disulfide oxidoreductases required for competence development. J. Biol. Chem. 277: 6994–7001.CrossRefGoogle Scholar
  77. 77.
    Himeno, T., T. Imanaka, and S. Aiba (1986) Protein secretion in Bacillus subtilis as influenced by the combination of signal sequence and the following mature portion. FEMS Microbiol. Lett. 35: 17–21.CrossRefGoogle Scholar
  78. 78.
    Darmon, E., D. Noone, A. Masson, S. Bron, O. P. Kuipers, K. M. Devine, J. M. Van Dijl (2002) A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J. Bacteriol. 184: 5661–5671.CrossRefGoogle Scholar
  79. 79.
    Stephenson, K. and C. R. Harwood (1998) The influence of a cell-wall-associated protease on production of -amylase by Bacillus subtilis. Appl. Environ. Microbiol. 64: 2875–2881.Google Scholar
  80. 80.
    Hyyryläinen, H. L., A. Bolhuis, E. Darmon, L. Muukkonen, P. Koski, M. Vitikainen, M. Sarvas, Z. Pragai, S. Bron, J. M. Van Dijl, and V. Kontinen (2001) A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol. Microbiol. 41: 1159–1172.CrossRefGoogle Scholar
  81. 81.
    Westers, H., L. Westers, E. Darmon, J. M. Van Dijl, W. J. Quax, and G. Zanen (2006) The CssRS two-component regulatory system controls a general secretion stress response in Bacillus subtilis. FEBS J. 273: 3816–3827.CrossRefGoogle Scholar
  82. 82.
    Jensen, C. L., K. Stephenson, S. T. Jorgensen, and C. Harwood (2000) Cell-associated degradation affects the yield of secreted engineered and heterologous proteins in the Bacillus subtilis expression system. Microbiol. 146: 2583–2594.CrossRefGoogle Scholar
  83. 83.
    Noone, D., A. Howell, R. Collery, and K. M. Devine (2001) YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression. J. Bacteriol. 183: 654–663.CrossRefGoogle Scholar
  84. 84.
    Stephenson, K., C. L. Jensen, S. T. Jorgensen, J. H. Lakey, and C. R. Harwood (2000) The influence of secretory-protein charge on late stages of secretion from the Gram-positive bacterium Bacillus subtilis. Biochem. J. 350: 31–39.CrossRefGoogle Scholar
  85. 85.
    Pohl, S., G. Bhavsar, J. Hulme, A. E. Bloor, G. Misirli, M. W. Leckenby, D. S. Radford, W. Smith, A. Wipat, E. D. Williamson, C. R. Harwood, and R. M. Cranenburgh (2013) Proteomic analysis of Bacillus subtilis strains engineered for improved production of heterologous proteins. Proteomics. 13: 3298–3308.CrossRefGoogle Scholar
  86. 86.
    Westers, L., H. Westers, G. Zanen, H. Antelmann, M. Hecker, D. Noone, K. M. Devine, J. M. Van Dijl, and W. J. Quax (2008) Genetic or chemical protease inhibition causes significant changes in the Bacillus subtilis exoproteome. Proteomics 8: 2704–2713.CrossRefGoogle Scholar
  87. 87.
    Li, W., X. Zhou, and P. Lu (2004) Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Res. Microbiol. 155: 605–610.CrossRefGoogle Scholar
  88. 88.
    Brockmeier, U., M. Wendorff, and T. Eggert (2006) Versatile expression and secretion vectors for Bacillus subtilis. Curr. Microbiol. 52: 143–148.CrossRefGoogle Scholar
  89. 89.
    Degering, C., T. Eggert, M. Puls, J. Bongaerts, S. Evers, K. H. Maurer, and K. E. Jaeger (2010) Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Appl. Environ. Microbiol. 76: 6370–6376.CrossRefGoogle Scholar
  90. 90.
    Mathiesen, G., A. Sveen, M. B. Brurberg, L. Fredriksen, L. Axelsson, and V. G. Eijsink (2009) Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC. Genomics 10: 425.CrossRefGoogle Scholar
  91. 91.
    Lee, H. C. and H. D. Bernstein (2001) The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc. Natl. Acad. Sci. USA 98: 3471–3476.CrossRefGoogle Scholar
  92. 92.
    Hyyryläinen, H. L., M. Sarvas, and V. P. Kontinen (2005) Transcriptome analysis of the secretion stress response of Bacillus subtilis. Appl. Microbiol. Biotechnol. 67: 389–396.CrossRefGoogle Scholar
  93. 93.
    Diao, L., Q. Dong, Z. Xu, S. Yang, J. Zhou, and R. Freudl (2012) Functional implementation of the posttranslational SecB-SecA protein-targeting pathway in Bacillus subtilis. Appl. Environ. Microbiol. 78: 651–659.CrossRefGoogle Scholar
  94. 94.
    Morimoto, T., R. Kadoya, K. Endo, M. Tohata, K. Sawada, S. Liu, T. Ozawa, T. Kodama, H. Kakeshita, Y. Kageyama, K. Manabe, S. Kanaya, K. Ara, K. Ozaki, and N. Ogasawara (2008) Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res. 15: 73–81.CrossRefGoogle Scholar
  95. 95.
    Manabe, K., Y. Kageyama, T. Morimoto, T. Ozawa, K. Sawada, K. Endo, M. Tohata, K. Ara, K. Ozaki, and N. Ogasawara (2011) Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl. Environ. Microbiol. 77: 8370–8381.CrossRefGoogle Scholar
  96. 96.
    Nguyen, H. D. and W. Schumann (2006) Establishment of an experimental system allowing immobilization of proteins on the surface of Bacillus subtilis cells. J. Biotechnol. 122: 473–482.CrossRefGoogle Scholar
  97. 97.
    Schneewind, O. and D. M. Missiakas (2012) Protein secretion and surface display in Gram-positive bacteria. Philos. Trans. R. Soc. Lond B Biol. Sci. 367: 1123–1139.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Chemical and Biomolecular EngineeringPusan National UniversityBusanKorea
  2. 2.Institute of GeneticsUniversity of BayreuthBayreuthGermany

Personalised recommendations