Advertisement

Biotechnology and Bioprocess Engineering

, Volume 20, Issue 3, pp 403–409 | Cite as

Characterization of Enterobacter cloacae under phoxim stress by two-dimensional gel electrophoresis

  • Dijun Zhang
  • Jiajie Xu
  • Weina He
  • Qianqian Tong
  • Liping Chen
  • Jun ZhouEmail author
  • Xiurong SuEmail author
Research Paper

Abstract

Phoxim, an organophosphorus pesticide, was widely used in agriculture but was banned because of its associated toxic runoff, which accumulated in surrounding water outlets. Here, Enterobacter cloacae was isolated from water outlets adjacent to industrial, agricultural and residential sewage having high organic phosphorus contents. To investigate the ability of E. cloacae to respond and survive under phoxim stress, both at the proteomic and transcriptional level, two-dimensional gel electrophoresis (2-DE), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS/MS) and quantitative real-time PCR (qPCR) were used. A 2-DE analysis showed that 12 h post phoxim exposure, 46 proteins were differentially expressed and 21 protein spots were selected for MALDI-TOF-MS/MS identification. This resulted in the successful identification of 16 spots, nine up-regulated and seven down-regulated. Of these, stress response proteins, including the chaperone protein DnaK, GroEL, F0F1 ATP synthase subunit beta, phosphoenolpyruvate carboxykinase and outer membrane channel protein, were only expressed in the phoxim-treated experimental group. To validate these findings, seven genes were selected and positively confirmed using qPCR. The results suggest that the identified expression patterns relate to E. cloacae resistance and tolerance to high phoxim concentrations.

Keywords

Enterobacter cloacae phoxim 2-DE qPCR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matsushima, A., S. Takakura, N. Fujihara, T. Saito, Y. Ito, Y. Iinuma, and S. Ichiyama (2010) High prevalence of mutators among Enterobacter cloacae nosocomial isolates and their association with antimicrobial resistance and repetitive detection. Clin. Microbiol. Infection. 16: 1488–1493.CrossRefGoogle Scholar
  2. 2.
    Sanders, W. and C. C. Sanders (1997) Enterobacter spp.: Pathogens poised to flourish at the turn of the century. Clin. Microbiol. Rev. 10: 220–241.Google Scholar
  3. 3.
    Zhonghua, W., Y. Jianqiang, Z. Dijun, Z. Chundan, S. Xiurong, and L. Taiwu (2014) Composition and structure of bacterial communities in waste water of aquatic products processing factories. Res. J. Biotechnol. 9: 65–70.Google Scholar
  4. 4.
    Dolejska, M., P. Frolkova, M. Florek, I. Jamborova, M. Purgertova, I. Kutilova, A. Cizek, S. Guenther, and I. Literak (2011) CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella sp. isolates in municipal wastewater treatment plant effluents. J. Antimicrob. Chem. 66: 2784–2790.CrossRefGoogle Scholar
  5. 5.
    Kim, M. R., S. A. Yu, M. Y. Kim, K. M. Choi, and C. W. Kim (2014) Analysis of glycated serum proteins in type 2 diabetes patients with nephropathy. Biotechnol. Bioproc. Eng. 19: 83–92.CrossRefGoogle Scholar
  6. 6.
    Donghui, Z., Z. Furong, N. Alasdair, X. Minjun, S. Huiqun, L. Ruiqing, H. Siyang, and Z. Xingquan (2014) Comparative proteomic analysis of different Toxoplasma gondii genotypes by two-dimensional fluorescence difference gel electrophoresis combined with mass spectrometry. Electrophoresis 35: 533–545.CrossRefGoogle Scholar
  7. 7.
    Nishida, N., M. Yagi-Utsumi, F. Motojima, M. Yoshida, I. Shimada, and K. Kato (2013) Nuclear magnetic resonance approaches for characterizing interactions between the bacterial chaperonin GroEL and unstructured proteins. J. Biosci. Bioeng. 116: 160–164.CrossRefGoogle Scholar
  8. 8.
    Chitradevi, S. T., G. Kaur, K. Singh, R. Sugadev, and A. Bansal (2013) Recombinant heat shock protein 60 (Hsp60/GroEL) of Salmonella enterica serovar Typhi elicits cross-protection against multiple bacterial pathogens in mice. Vaccine. 31: 2035–2041.CrossRefGoogle Scholar
  9. 9.
    Kuwana, R. and N. Yamamoto (2012) Increases in GroES and GroEL from Lactobacillus acidophilus L-92 in response to a decrease in medium pH, and changes in cytokine release from splenocytes: Transcriptome and proteome analyses. J. Biosci. Bioeng. 114: 9–16.CrossRefGoogle Scholar
  10. 10.
    Melkani, G. C., R. L. Sielaff, G. Zardeneta, and J. A. Mendoza (2008) Divalent cations stabilize GroEL under conditions of oxidative stress. Biochem. Biophysic.l Res. Communicat. 368: 625–630.CrossRefGoogle Scholar
  11. 11.
    Hu, B., L. H. Phuoc, P. Sorgeloos, and P. Bossier (2014) Bacterial HSP70 (DnaK) is an efficient immune stimulator in Litopenaeus vannamei. Aquacult. 418-419: 87–93.CrossRefGoogle Scholar
  12. 12.
    Fujii, J. and Y. Ikeda (2002) Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep. 7: 123–130.CrossRefGoogle Scholar
  13. 13.
    Venardos, K. M. and D. M. Kaye (2007) Myocardial ischemiareperfusion injury, antioxidant enzyme systems, and selenium: A review. Curr. Med. Chem. 14: 1539–1549.CrossRefGoogle Scholar
  14. 14.
    Mangiullo, R., A. Gnoni, F. Damiano, L. Siculella, F. Zanotti, S. Papa, and G. V. Gnoni (2010) 3,5-diiodo-L-thyronine upregulates rat-liver mitochondrial F(0)F(1)-ATP synthase by GA-binding protein/nuclear respiratory factor-2. Biochim. et Biophysica Acta. 1797: 233–240.CrossRefGoogle Scholar
  15. 15.
    Hongquan W., X. Yuxia, Z. Xiaoyan, Z. Hong, Y. Jie, S. Xiaobo, G. Jingchun, and Z. Cuiqing (2009) Overexpression of F(0)F(1)-ATP synthase alpha suppresses mutant huntingtin aggregation and toxicity in vitro. Biochem. Biophysic. Res. Communicat. 390: 1294–1298.CrossRefGoogle Scholar
  16. 16.
    Ma, J. F., P. R. Ryan, and E. Delhaize (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6: 273–278.CrossRefGoogle Scholar
  17. 17.
    Yuxin Y., L. Ming, Z. Heng, Y. Chunxiang, and H. Yujin (2011) Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. J. Plant Physiol. 168: 474–480.CrossRefGoogle Scholar
  18. 18.
    Kangmei, L., G. Xuefang, M. Lina, W. Zonghua, L. Guodong, and L. Bo (2008) The biological characteristics of organophosphorus pesticide-degrading bacterium, Enterobacter cloacae. Chin. Agricult. Sci. Bull. 124: 382–386.Google Scholar
  19. 19.
    Yen, M. R., C. R. Peabody, S. M. Partovi, Y. Zhai, Y. H. Tseng, and M. H. Saier (2002) Protein-translocating outer membrane porins of Gram-negative bacteria. Biochimica et Biophysica Acta (BBA)-Biomemb. 1562: 6–31.CrossRefGoogle Scholar
  20. 20.
    Lavigne, J. P., A. Sotto, M. H. Nicolas-Chanoine, N. Bouziges, J. M. Pages, and A. Davin-Regli (2013) An adaptive response of Enterobacter aerogenes to imipenem: Regulation of porin balance in clinical isolates. Internat. J. Antimicrobial Agents. 41: 130–136.CrossRefGoogle Scholar
  21. 21.
    Khan, J., S. Gupta, K. Chattopadhyay, and A. Mukhopadhaya (2012) Refolding and functional assembly of the Vibrio cholerae porin OmpU recombinantly expressed in the cytoplasm of Escherichia coli. Protein Expres. Purif. 85: 204–210.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Marine ScienceNingbo UniversityNingbo, ZhejiangChina
  2. 2.Department of Biological and Environmental EngineeringCornell UniversityIthacaUSA

Personalised recommendations