Advertisement

Biotechnology and Bioprocess Engineering

, Volume 20, Issue 2, pp 304–314 | Cite as

Nitric-acid hydrolysis of Miscanthus giganteus to sugars fermented to bioethanol

  • Fuxin Yang
  • Waheed Afzal
  • Kun Cheng
  • Nian Liu
  • Markus Pauly
  • Alexis T. Bell
  • Zhigang Liu
  • John M. PrausnitzEmail author
Research Paper

Abstract

Miscanthus giganteus (M. giganteus) is a promising feedstock for the production of bioethanol or biochemicals. Using only dilute nitric acid, this work describes a two-step process for hydrolyzing hemicellulose and cellulose to fermentable sugars. Primary variables were temperature and reaction time. The solid-to-liquid mass ratio was 1:8. No enzymes were used. In the first step, M. giganteus was contacted with 0.5 wt.% nitric acid at temperatures between 120 and 160°C for 5 to 40 min. The second step used 0.5 or 0.75 wt.% nitric acid at temperatures between 180 and 210°C for less than 6 min. Under selected conditions, almost all hemicellulose and 58% cellulose were transferred to the liquid phase. Small amounts of degradation products were observed. The xylose solution obtained from the nitric-acid hydrolysis was fermented for 96 h and the glucose solution for 48 h to yield 0.41 g ethanol/g xylose and 0.46 g ethanol/g glucose. To characterize residual solids and the liquor from both steps, nuclear-magneticresonance (NMR) spectroscopy was performed for each fraction. The analytical data indicate that the liquid phase from Steps 1 and 2 contain little lignin or lignin derivatives.

Keywords

Miscanthus giganteus dilute-nitric-acid hydrolysis two-step process fermentation analysis with NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carroll, A. and C. Somerville (2009) Cellulosic biofuels. Annu. Rev. Plant Biol. 60: 165–182.CrossRefGoogle Scholar
  2. 2.
    Heaton, E. A., F. G. Dohleman, A. F. Miguez, J. A. Juvik, V. Lozovaya, J. Widholm, O. A. Zabotina, G. F. McIsaac, M. B. David, T. B. Voigt, N. N. Boersma, and S. P. Long (2010) Miscanthus: A promising biomass crop. Adv. Bot. Res. 56: 75–137.CrossRefGoogle Scholar
  3. 3.
    McMillan, J.. D. (1994) Pretreatment of Lignocellulosic Biomass. pp. 292–324. Enzymatic Conversion of Biomass for Fuels Production. American Chemical Society, Wahington DC, USA.CrossRefGoogle Scholar
  4. 4.
    Shill, K., S. Padmanabhan, Q. Xin, J. M. Prausnitz, D. S. Clark, and H. W. Blanch (2011) Ionic liquid pretreatment of cellulosic biomass: Enzymatic hydrolysis and ionic liquid recycle. Biotechnol. Bioeng. 108: 511–520.CrossRefGoogle Scholar
  5. 5.
    Liu, Z., S. Padmanabhan, K. Cheng, P. Schwyter, M. Pauly, A. T. Bell, and J. M. Prausnitz (2013) Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresour. Technol. 135: 23–29.CrossRefGoogle Scholar
  6. 6.
    Liu, Z., S. Padmanabhan, K. Cheng, H. Xie, A. Gokhale, W. Afzal, H. Na, M. Pauly, A. T. Bell, and J. M. Prausnitz (2014) Two-step delignification of miscanthus to enhance enzymatic hydrolysis: Aqueous ammonia followed by sodium hydroxide and oxidants. Energy Fuels. 28: 542–548.CrossRefGoogle Scholar
  7. 7.
    Yu, G., W. Afzal, F. Yang, S. Padmanabhan, Z. Liu, H. Xie, M. A. Shafy, A. T. Bell, and J. M. Prausnitz (2014) Pretreatment of miscanthus×giganteus using aqueous ammonia with hydrogen peroxide to increase enzymatic hydrolysis to sugars. J. Chem. Technol. Biotechnol. 89: 698–706.CrossRefGoogle Scholar
  8. 8.
    Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Lee, M. Holtzapple, and M. Ladisch (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673–686.CrossRefGoogle Scholar
  9. 9.
    Wyman, C. E. (1994) Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Bioresour. Technol. 50: 3–15.CrossRefGoogle Scholar
  10. 10.
    Taherzadeh, M. J. and K. Karimi (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioResources. 2: 472–499.Google Scholar
  11. 11.
    Lloyd, T. A. and C. E. Wyman (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96: 1967–1977.CrossRefGoogle Scholar
  12. 12.
    Moe, S. T., K. K. Janga, T. Hertzberg, M.-B. Hägg, K. Øyaas, and N. Dyrset (2012) Saccharification of lignocellulosic biomass for biofuel and biorefinery applications–A renaissance for the concentrated acid hydrolysis? Energy Procedia. 20: 50–58.CrossRefGoogle Scholar
  13. 13.
    Nguyen, Q., M. Tucker, F. Keller, and C. Eddy (2000) Two-stage dilute-acid pretreatment of softwoods. Appl. Biochem. Biotechnol. 84–86: 561–576.CrossRefGoogle Scholar
  14. 14.
    Sannigrahi, P., A. Ragauskas, and S. Miller (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. BioEnergy Res. 1: 205–214.CrossRefGoogle Scholar
  15. 15.
    Söderström, J., L. Pilcher, M. Galbe, and G. Zacchi (2003) Twostep steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenergy. 24: 475–486.CrossRefGoogle Scholar
  16. 16.
    Monavari, S., M. Galbe, and G. Zacchi (2009) The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis. Biotechnol. Biofuels. 2: 6.CrossRefGoogle Scholar
  17. 17.
    Nguyen, Q. A., M. P. Tucker, B. L. Boynton, F. A. Keller, and D. J. Schell (1998) Dilute acid pretreatment of softwoods- Scientific note. Appl. Biochem. Biotechnol. 70–2: 77–87.CrossRefGoogle Scholar
  18. 18.
    Rodríguez-Chong, A., J. Alberto Ramírez, G. Garrote, and M. Vázquez (2004) Hydrolysis of sugar cane bagasse using nitric acid: A kinetic assessment. J. Food Eng. 61: 143–152.CrossRefGoogle Scholar
  19. 19.
    Zhang, R., X. Lu, Y. Sun, X. Wang, and S. Zhang (2011) Modeling and optimization of dilute nitric acid hydrolysis on corn stover. J. Chem. Technol. Biotechnol. 86: 306–314.CrossRefGoogle Scholar
  20. 20.
    Brink, D. L. (1996) Hydrolyzing lignocellulose. US Patent 5,536,325.Google Scholar
  21. 21.
    Brink, D. L. (1993) Two stage hydrolysis or depolymerization of polysaccharide material as cellulose, hemicellulose and lignocellulose to monosaccharides using nitric acid. US Patent 5,221,357.Google Scholar
  22. 22.
    Brink, D. L. (1994) Method of treating biomass material. US Patent 5,366,558.Google Scholar
  23. 23.
    Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker (2008) Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Golden, CO, USA.Google Scholar
  24. 24.
    Cheng, K., H. Sorek, H. Zimmermann, D. E. Wemmer, and M. Pauly (2013) Solution-state 2D NMR spectroscopy of plant cell walls enabled by a Dimethylsulfoxide-d6/1-Ethyl-3-methylimidazolium acetate solvent. Anal. Chem. 85: 3213–3221.CrossRefGoogle Scholar
  25. 25.
    Kim, S. R., J. M. Skerker, W. Kang, A. Lesmana, N. Wei, A. P. Arkin, and Y. S. Jin (2013) Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose Fermentation in Saccharomyces cerevisiae. Plos One 8: 13.Google Scholar
  26. 26.
    Greer, D. R., T. P. Basso, A. B. Ibanez, S. Bauer, J. M. Skerker, A. E. Ozcam, D. Leon, C. Shin, A. P. Arkin, and N. P. Balsara (2014) Fermentation of hydrolysate detoxified by pervaporation through block copolymer membranes. Green Chem. 16: 4206–4213.CrossRefGoogle Scholar
  27. 27.
    Chum, H., D. Johnson, S. Black, and R. Overend (1990) Pretreatment-Catalyst effects and the combined severity parameter. Appl. Biochem. Biotechnol. 24–25: 1–14.CrossRefGoogle Scholar
  28. 28.
    Kim, H. and J. Ralph (2010) Solution-state 2D NMR of ballmilled plant cell wall gels in DMSO-d6/pyridine-d5. Org. Biomol. Chem. 8: 576–591.CrossRefGoogle Scholar
  29. 29.
    Jin, Y. S. and T. W. Jeffries (2004) Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab. Eng. 6: 229–238.CrossRefGoogle Scholar
  30. 30.
    Lewis Liu, Z., J. Moon, B. Andersh, P. Slininger, and S. Weber (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 81: 743–753.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fuxin Yang
    • 1
    • 2
    • 3
  • Waheed Afzal
    • 1
    • 2
    • 4
  • Kun Cheng
    • 1
  • Nian Liu
    • 1
    • 2
  • Markus Pauly
    • 1
  • Alexis T. Bell
    • 1
    • 2
  • Zhigang Liu
    • 3
  • John M. Prausnitz
    • 1
    • 2
    Email author
  1. 1.Energy Biosciences InstituteUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Chemical & Biomolecular EngineeringUniversity of CaliforniaBerkeleyUSA
  3. 3.MOE Key Laboratory of Thermo-Fluid Science and EngineeringXi’an Jiaotong UniversityXi’an, ShaanxiChina
  4. 4.School of EngineeringUniversity of AberdeenAberdeenUK

Personalised recommendations