Biotechnology and Bioprocess Engineering

, Volume 20, Issue 2, pp 373–379 | Cite as

Aggregate cell suspension cultures of Psoralea corylifolia improved phytoestrogens production

  • Ramesh Satdive
  • Amit N. Shinde
  • Sudhir Singh
  • Suchita Kamble
  • Shraddha Singh
  • Nutan Malpathak
  • Devanand P. FulzeleEmail author
Research Paper


The intensity of the hydrodynamic stress on cell aggregates is closely related to the growth and production of secondary metabolites. In this study, we have investigated the effects of cell aggregation in suspension cultures of Psoralea corylifolia on growth and phytoestrogens production. HPLC analysis revealed that cell aggregates of 1.2 mm size produced maximum amount of daidzein (2.84% dry wt.) and genistein (0.47% dry wt.) on day 20. The phytoestrogens production level was ~2-fold more than that of heterogeneous cell aggregates (control) in suspension cultures and 11-fold more than field grown plants. Analysis of spent medium revealed no leaching of phytoestrogens. Results indicated that certain degree of cell aggregation in suspension cultures directly supported phytoestrogen production.


Psoralea corylifolia cell aggregate phytoestrogens daidzein genistein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hsu, Y., C. Wu, J. Chem, Y. Yang, and S. Wang (2001) The presence of three isoflavonoid compounds in Psoralea corylifolia. J. Chromato. Sci. 39: 441–444.CrossRefGoogle Scholar
  2. 2.
    Shinde, A. N., N. Malpathak, and D. P. Fulzele (2010) Determination of isoflavones content and antioxidant activity in Psoralea corylifolia L. callus cultures. Food Chem. 118: 128–132.CrossRefGoogle Scholar
  3. 3.
    Mueller, S. O. and K. S. Korach (2001) Mechanism of estrogen receptor-mediated agonistic and antagonistic effects. pp. 1–25. In: Metzler, M. (eds). Endocrine Disruptors. Springer, Heidelberg, Berlin.Google Scholar
  4. 4.
    Hwang, C. S., H. S. Kwak, H. J. Lim, S. H. Lee, Y. S. Kang, and T. B. Choe (2006) Isoflavone metabolites and their in vitro dual functions: They can play estrogenic agonist or antagonist depending on the estrogen concentration. J. Steroid Biochem. Mol. Biol. 101: 246–253.CrossRefGoogle Scholar
  5. 5.
    Coward, L., N. C. Barnes, K. D. R. Setchell, and S. Barnes, (1993) Genistein, daidzein and their β-glycosides conjugates: anti-tumor isoflavones in soybean food from America and Asian diets. J. Agric. Food Chem. 41: 1961–1967.CrossRefGoogle Scholar
  6. 6.
    Sun, N. J., S. H. Woo, J. M. Cassady, and R. M. Snapka (1998) DNA polymerase and topoisomerase II inhibitors from Psoralea corylifolia. J. Nat. Prod. 61: 362–366.CrossRefGoogle Scholar
  7. 7.
    Qiang, R. M., G. Kuhn, J. Wegner, and J. Chen (2001) Isoflavones, substances with multi-biological and clinical properties. Eur. J. Nutr. 40: 135–146.CrossRefGoogle Scholar
  8. 8.
    Lissin, L. W. and J. P. Cooke (2000) Phytoestorgens and cardiovascular health. J. Ameri. College Cardiol. 35: 1403–1410.CrossRefGoogle Scholar
  9. 9.
    Siva, R., S. Mayes, S. K. Behera, and C. Rajasekaran (2012) Anthraquinones dye production using root cultures of Oldenlandia umbellata L. Industrial Crop. Prod. 37: 415–419.CrossRefGoogle Scholar
  10. 10.
    Siva, R., C. Rajasekaran, and G. Mudgal (2009) Induction of somatic embryogenesis and organogenesis in Oldenlandia umbellata L., a dye-yielding medicinal plant. Plant Cell Tiss. Org. Cult. 98: 205–211.CrossRefGoogle Scholar
  11. 11.
    Satdive, R. K., D. P, Fulzele, and S. Eapen (2007) Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. J. Biotech. 128: 281–289.CrossRefGoogle Scholar
  12. 12.
    Shinde, A. N., N. Malpathak, and D. P. Fulzele (2009) Studied enhancement strategies for phytoestrogens production in shake flasks by suspension culture of Psoralea corylifolia. Bioresour. Technol. 100: 1833–1839.CrossRefGoogle Scholar
  13. 13.
    Yu, F., D. Zhang, F. Bai, and L. An (2005) The accumulation of isocamptothecin A and B in suspension cell culture of Camptotheca acuminate. Plant Cell, Tiss. Org. Cult. 81: 159–163.CrossRefGoogle Scholar
  14. 14.
    Jianfeng, X., S. Zhiguo, and F. Pusun (1998) Suspension culture of compact callus aggregate of Rhodiola sachalinensis for improved salidroside production. Enz. Microb. Technol. 23: 20–27.CrossRefGoogle Scholar
  15. 15.
    Dixon, R. A. (1995) Isolation and maintenance of callus and cell suspension cultures. pp. 1–20. In: Dixon, R. A. (eds.). Plant Cell Culture: A practical approach. IRL press, Washington DC, USA.Google Scholar
  16. 16.
    Keßler, M., H. J. G. ten Hoopen, and S. Furusaki (1999) The effect of the aggregate size on the production of ajmalicine and tryptamine in Catharanthus roseus suspension culture. Enzy. Microb. Techno. 24: 308–315.CrossRefGoogle Scholar
  17. 17.
    Liu, H. W., C. H. Zhang, X. F. Liu, and Y. X. Wu (2001) Initiation, growth and paclitaxol production of Taxus chinensis cell aggregate suspension cultures. J. Huazhong (Central China) Univ. Sci. Technol. 29 (Suppl. 1): 44–47.Google Scholar
  18. 18.
    Edahiro, J. and M. Seki (2006) Phenylpropanoid metabolite supports cell aggregate formation in strawberry cell suspension culture. L. Biosci. Bioeng. 102: 8–13.CrossRefGoogle Scholar
  19. 19.
    Ping, H. J., H. W. Chang, and T. H. Kwong (1993) Diffusionenhanced bioreactions: A hypothetical mechanism for plant cell aggregation. Bull. Math. Biol. 55: 869–889.CrossRefGoogle Scholar
  20. 20.
    Hulst, A. C., M. M. T. Meyer, H. Breteler, and J. Tramper (1989) Effect of aggregate size in cell cultures of Tagetes patula on thiophene production and cell growth. Appl. Microbial. Biotechnol. 30: 18–25.CrossRefGoogle Scholar
  21. 21.
    Cheng, X. Y., W. Tao, B. Guo, N. Wen, and L. Chun-Zhao (2005) Cistanche deserticola cell suspension cultures: Phenylethanoid glycosides biosynthesis and antioxidant activity. Proc. Biochem. 40: 3119–3124.CrossRefGoogle Scholar
  22. 22.
    Doran, P. M. (1993) Plant secondary metabolites- scale up aspects. Adv. Biochem.Biotechnol. 48: 115–168.Google Scholar
  23. 23.
    Murashige, T. and F. Skoog (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 475–479.Google Scholar
  24. 24.
    Narayan, M. S., R. Thimmaraju, and N. Bhagyalakshmi (2005) Interplay of growth regulators during solid–state and liquid-state batch cultivation of anthocyanin producing cell line of Daucus carota. Proc. Biochem. 40: 351–358.CrossRefGoogle Scholar
  25. 25.
    Yuan, X., B. Zhao, and Y. Wang (2004) Cell culture of Saussurea medusa in a periodically submerged air-lift bioreactor. Biochem. Eng. J. 21: 235–239.CrossRefGoogle Scholar
  26. 26.
    Zhao, D., Y. Huang, Z. Jin, W. Qu, and D. Lu (2003) Effect of aggregate size in cell cultures of Saussurea medusa on cell growth and jaceosidin production. Plant Cell Rep. 21: 1129–1133.CrossRefGoogle Scholar
  27. 27.
    Xu, J. F., P. Q. Yin, and X. G. Wei (1998) Self–immobilized aggregate culture of Taxus cuspidate for improved taxol production. Biotechnol. Tech. 12: 241–244.CrossRefGoogle Scholar
  28. 28.
    Bais, H. P., T. S. Walker, J. J. Mcgrew, and J. M. Vivanco (2002) Factors affecting growth of cell suspension cultures of Hypericum perforatum L. (St. John’s wort) and production of hypericin. In vitro Cell Dev. Biol- Plant. 38: 58–65.CrossRefGoogle Scholar
  29. 29.
    Kolewe, M. E., M. A. Henson, and S. C. Roberts. (2011) Analysis of aggregate size as a process variable affecting paclitaxel accumulation in Taxus suspension cultures. Biotechnol. Prog. 27: 1365–1372.CrossRefGoogle Scholar
  30. 30.
    Bouque, V., F. Bourgaud, C. Nguyen, and A. Guckert (1998) Production of daidzein by callus cultures of Psoralea species and comparison with the plants. Plant Cell Tiss. Org. Cult. 53: 35–40.CrossRefGoogle Scholar
  31. 31.
    Bourgaud, F., V. Bouque, and A. Guckert (1999) Production of flavonoids by Psoralea hairy root cultures. Plant Cell Tiss. Org. Cult. 56: 97–104.CrossRefGoogle Scholar
  32. 32.
    Bourgaud, F., C. Nguyen, and A. Guckert (1995) Psoralea species: In vitro culture and production of furanocoumarins and other secondary metabolites. pp 388–411. In: Bajaj Y. P. S. (ed.). Biotechnology in Agriculture and Forestry XXII, Medicinal and Aromatic Plants VIII. Springer, Berlin, Heidelberg.Google Scholar
  33. 33.
    Lystvan, K., V. Belokurova, Y. Sheludko, J. Ingham, L. V. Prykhodko, O. Kishchenko, E., Paton, and M. Kuchuk (2010) Production of bakuchiol by in vitro systems of Psoralea drupacea Plant Cell Tiss. Org. Cult. 101: 99–103.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ramesh Satdive
    • 1
  • Amit N. Shinde
    • 2
  • Sudhir Singh
    • 1
  • Suchita Kamble
    • 1
  • Shraddha Singh
    • 1
  • Nutan Malpathak
    • 2
  • Devanand P. Fulzele
    • 1
    Email author
  1. 1.Plant Biotechnology and Secondary Metabolites Section, NA&BT DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Department of BotanyUniversity of PunePuneIndia

Personalised recommendations