Biotechnology and Bioprocess Engineering

, Volume 19, Issue 6, pp 943–950 | Cite as

Napier grass (Pennisetum purpureum Schumach) as raw material for bioethanol production: Pretreatment, saccharification, and fermentation

  • Masahide YasudaEmail author
  • Yasuyuki Ishii
  • Kazuyoshi Ohta
Review Paper


Recently Napier grass (Pennisetum purpureum Schumach) has been recognized to meet the requirement of lignocellulosic bioethanol production, because it has low lignin-content and a relatively high herbage mass per year and per area. Therefore, pretreatment, saccharification, and fermentation processes for ethanol production from Napier grass have been extensively studied. As pretreatment method, acid, alkali, PBHW (pressurized batch hot water), and LMAA (low-moisture anhydrous ammonia) pretreatments were reviewed. As saccharification and fermentation process, saccharification followed by co-fermentation of hexose and pentose, simultaneous saccharification and fermentation (SSF) followed by pentose fermentation, simultaneous saccharification and co-fermentation (SSCF) process were proposed. The SSCF was most advantageous process since the SSCF can prevent contamination risks of other microorganism and can construct simple processing procedure. An example of ethanol production from Napier grass was a combination process of LMAA-pretreatment with SSCF which was performed for of LMAA-treated Napier grass at 36℃ for 96 h using cellulase, xylanase, Saccharomyces cerevisiae, and Escherichia coli KO11. The ethanol yield reached 74.1%. Thus, Napier grass was thought to be a promising biomass for ethanol production.


LMAA SSF SSCF cellulase xylanase Saccharomyces cerevisiae Escherichia coli KO11 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taherzadeh, M. J. and K. Karimi (2007) Enzyme-based hydrolysis processes for ethanol from lignocelluosic materials: A review. BioResources. 2: 707–738.Google Scholar
  2. 2.
    Galbe, M. and G. Zacchi (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv. Biochem. Eng. Biotechnol. 108: 41–65.Google Scholar
  3. 3.
    Ryu, S. and M. N. Karim (2011) A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. Appl. Microbiol. Biotechnol. 91: 529–542.CrossRefGoogle Scholar
  4. 4.
    Suriyachai, N., K. Weerasaia, N. Laosiripojana, V. Champreda, and P. Unrean (2013) Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments. Bioresour. Technol. 142: 171–178CrossRefGoogle Scholar
  5. 5.
    Sakamoto, T., T. Hasunuma, Y. Hori, R. Yamada, and A. Kondo (2012) Direct ethanol production from hemicellulosic materials of rice straw by use of engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xyloseutilizing Saccharomyces cerevisiae cells. J. Biotechnol. 158: 203–210.CrossRefGoogle Scholar
  6. 6.
    Cardona, C. A., J. A. Quintero, and I. C. Paz (2010) Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresour. Technol. 101: 4754–4766.CrossRefGoogle Scholar
  7. 7.
    Keshwani, D. R. and J. J. Cheng (2009) Switchgrass for bioethanol and other value-added applications: A review. Bioresour. Technol. 100: 1515–1523.CrossRefGoogle Scholar
  8. 8.
    Sathitsuksanoh, N., Z. Zhu, T.–J. Ho, M. -D. Bai, and Y. -H. P. Zhang (2010) Bamboo saccharification through cellulose solvent- based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Bioresour. Technol. 101: 4926–4929.CrossRefGoogle Scholar
  9. 9.
    Yamashita, Y. M. Shono, C. Sasaki, and Y. Nakamura (2010) Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohyd. Polym. 79: 914–920.CrossRefGoogle Scholar
  10. 10.
    Talebnia, F., D. Karakashev, and I. Angelidaki (2010) Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol. 101: 4744–4753.CrossRefGoogle Scholar
  11. 11.
    González-García, S., M. T. Moreira, and G. Feijoo (2010) Envi-ronmental performance of lignocellulosic bioethanol production from alfalfa stems. Biofuels Bioprod. Bioref. 4: 118–131.CrossRefGoogle Scholar
  12. 12.
    Guo, G. -L., W. -H. Chen, W. -H. Chen, L. -C. Men, and W. -S. Hwang (2008) Characterization of dilute acid pretreatment of silvergrass for ethanol production. Bioresour. Technol. 99: 6046–6053.CrossRefGoogle Scholar
  13. 13.
    Ra, K., F. Shiotsu, J. Abe, and S. Morita (2012) Biomass yield and nitrogen use efficiency of cellulosic energy crops for ethanol production. Biomass and Bioenergy 37: 330–334.CrossRefGoogle Scholar
  14. 14.
    Anderson, W. F., B. S. Dien, S. K. Brandon, and J. D. Peterson (2008) Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol Anderson. Appl. Biochem. Biotechnol. 145: 13–21.CrossRefGoogle Scholar
  15. 15.
    Kai, T., T. Tanimura, N. Nozaki, M. Suiko, and K. Ogawa (2010) Bioconversion of soft cellulosic resources into sugar and ethanol. Seibutsu-kogaku Kaishi 88: 66–72.Google Scholar
  16. 16.
    Lin, C. -W., D. -T. Tran, C. -Y. Lai, Y. -P. I, and C. -H. Wu (2010) Response surface optimization for ethanol production from Pennisetum Alopecoider by Klebsiella oxytoca THLC0409. Biomass and Bioenergy 34: 1922–1929.CrossRefGoogle Scholar
  17. 17.
    Lin, C. -W., C. -H. Wu, D. -T. Tran, M. -C. Shih, W. -H. Li, and C. -F. Wu (2011) Mixed culture fermentation from lignocellulosic materials using thermophilic lignocellulose-degrading anaerobes. Proc. Biochem. 46: 489–493.CrossRefGoogle Scholar
  18. 18.
    Huang, C. -F., Y. -F. Jiang, G. -L. Guo, and W. -S. Hwang (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour. Technol. 102: 3322–3329.CrossRefGoogle Scholar
  19. 19.
    Brandon, S. K., L. N. Sharma, G. M. Hawkins, W. F. Anderson, C. K. Chambliss, and J. Doran-Peterson (2011) Ethanol and coproduct generation from pressurized batch hot water pretreated T85 bermudagrass and Merkeron napiergrass using recombinant Escherichia coli as biocatalyst. Biomass Bioenergy 35: 3667–3673.CrossRefGoogle Scholar
  20. 20.
    Chen, H. -L., Y. -C. Chen, M. -Y. J. Lu, J. -J. Chang, H.-T. C. Wang, H. -M. Ke, T. -Y. Wang, S. -K. Ruan, T. -Y. Wang, K. -Y. Hung, H. Y. Cho, W. -T. Lin, M. -C. Shih, and W. -H. Li (2012) A highly efficient â-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnol. Biofuels 5: 24: 1–10.Google Scholar
  21. 21.
    Tran, D. -T., C. -W. Lin, C. -Y. Lai, and C. -H. Wu (2011) Ethanol production from lignocelluloses by native strain Klebsiella oxytoca THLC0409. Waste and Biomass Valor. 2: 389–396.CrossRefGoogle Scholar
  22. 22.
    Yasuda, M., A. Miura, T. Shiragami, J. Matsumoto, I. Kamei, Y. Ishii, and K. Ohta (2012) Ethanol production from non-pretreated napiergrass through a simultaneous saccharification and fermentation process followed by a pentose fermentation with Escherichia coli KO11. J. Biosci. Bioeng. 114: 188–192.CrossRefGoogle Scholar
  23. 23.
    Takata, E., K. Tsutsumi, Y. Tsutsumi, and K. Tabata (2013) Production of monosaccharides from napier grass by hydrothermal process with phosphoric acid. Bioresour. Technol. 143: 53–58.CrossRefGoogle Scholar
  24. 24.
    Tran, D. -T., Y. -P. I, and C. -W. Lin (2013) Developing co-culture system of dominant cellulolytic Bacillus sp. THLA0409 and dominant ethanolic Klebsiella oxytoca THLC0409 for enhancing ethanol production from lignocellulosic materials. J. Taiwan Inst. Chem. Eng. 44: 762–769.Google Scholar
  25. 25.
    Yasuda, M., K. Takeo, H. Nagai, T. Uto, T. Yui, T. Matsumoto, Y. Ishii, and K. Ohta (2013) Enhancement of ethanol production from napiergrass (Pennisetum purpureum Schumach) by a lowmoisture anhydrous ammonia pretreatment. J. Sustain. Bioenergy Sys. 3: 179–185.CrossRefGoogle Scholar
  26. 26.
    Yasuda, M., H. Nagai, K. Takeo, Y. Ishii, and K. Ohta (2014) Bio-ethanol production through simultaneous saccharification and co-fermentation (SSCF) of a low-moisture anhydrous ammonia (LMAA)-pretreated napiegrass (Pennisetum purpureum Schumach). SpringerPlus 3: 333.CrossRefGoogle Scholar
  27. 27.
    Ishii, Y., N. Yamaguchi, and S. Idota (2005) Dry matter production and in vitro dry matter digestibility of tillers among napier grass (Pennisetum purpureum Schumach) varieties. Grassl. Sci. 51: 153–163.CrossRefGoogle Scholar
  28. 28.
    Hanna, W. W. and L. E. Sollenberger (2007) Tropical and Subtropical Grasses. pp. 245–255. In: Barnes, R. F. (ed.). Forages. Volume II, 6th ed., Blackwell Pub, Iowa USA.Google Scholar
  29. 29.
    Ishii, Y., K. Hamano, D. J. Kang, K. Rengsirikul, S. Idota, K. Fukuyama, and A. Nishiwaki (2013) C4-Napier grass cultivation for cadmium phytoremediation activity and organic livestock farming in Kyushu, Japan. J. Agric. Sci. Technol. A 3: 321–330.Google Scholar
  30. 30.
    Rengsirikul, K., Y. Ishii, K. Kangvansaichol, P. Sripichitt, V. Punsuvon, P. Vaithanomsat, G. Nakamanee, and S. Tudsri (2013) Biomass yield, chemical composition and potential ethanol yields of 8 cultivars of napiergrass (Pennisetum purpureum Schumach.) harvested 3-monthly in central Thailand. J. Sustain. Bioenergy Syst. 3: 107–112.CrossRefGoogle Scholar
  31. 31.
    Wadi, A., Y. Ishii, and S. Idota (2004) Effects of cutting interval and cutting height on dry matter yield and overwintering ability at the established year in Pennisetum species. Plant Production Science. 7: 88–96.CrossRefGoogle Scholar
  32. 32.
    Ishii, Y., M. Mukhtar, S. Idota, and K. Fukuyama (2005) Rotational grazing system for beef cows on dwarf napiergrass pasture oversown with Italian ryegrass for 2 years after establishment. Grassl. Sci. 51: 209–220.Google Scholar
  33. 33.
    Mukhtar, M., Y. Ishii, S. Tudsri, S. Idota, and T. Sonoda (2003) Dry matter productivity and overwintering ability in the dwarf and normal napiergrasses as affected by the planting density and cutting frequency. Plant Production Science. 6: 65–73.CrossRefGoogle Scholar
  34. 34.
    Wadi, A., Y. Ishii, and S. Idota (2003) Effects of the level of fertilizer input on dry matter productivity of napiergrass and kinggrass. Grassland Science. 48: 490–503.Google Scholar
  35. 35.
    Mukhtar, M., Y. Ishii, S. Tudsri, S. Idota, and T. Sonoda (2003) Dry matter productivity and overwintering ability in the dwarf and normal napiergrasses as affected by the planting density and cutting frequency. Plant Prod. Sci. 6: 65–73.CrossRefGoogle Scholar
  36. 36.
    Mukhtar, M., Y. Ishii, S. Idota, Y. Horii, and T. Sonoda (2004) Grazing characteristics in the dwarf napiergrass (Pennisetum purpureum Schumach) pasture by breeding beef cows at the first and second years after establishment in Kyushu. Grassland Science. 50: 121–131.Google Scholar
  37. 37.
    Utamy, R. F., Y. Ishii, S. Idota, N. Harada, and K. Fukuyama (2011) Adaptability of dwarf napiergrass under cut-and-carry and grazing systems for smallholder beef farmers in southern Kyushu, Japan. J. Warm Regional Soc. Animal Sci. Japan 54: 65–76.Google Scholar
  38. 38.
    Shiragami, T., T. Tomo, H. Tsumagari, Y. Ishii, and M. Yasuda (2012) Hydrogen evolution from napiergrass by the combination of biological treatment and a Pt-loaded TiO2-photocatalytic reaction. Catalyst 2: 56–67.CrossRefGoogle Scholar
  39. 39.
    Shiralipor, A. and P. H. Smith (1984) Conversion of biomass into methane gas. Biomass 6: 85–92.CrossRefGoogle Scholar
  40. 40.
    Alvira, P., E. Tomás-Pejó, M. Ballesteros, and M. J. Negro (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101: 4851–4861.CrossRefGoogle Scholar
  41. 41.
    Ohta, K., F. Alterthum, and L. O. Ingram (1990) Effects of environmental conditions on xylose fermentation by recombinant Escherichia coli. Appl. Environ. Microbiol. 56: 463–465.Google Scholar
  42. 42.
    Ohta, K., D. S. Beall, J. P. Mejia, K. T. Shanmugam, and L. O. Ingram (1991) Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl. Environ. Microbiol. 57: 893–900.Google Scholar
  43. 43.
    Underwood, S. A., M. L. Buszko, K. T. Shanmugam, and L. O. Ingram (2002) Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl. Environ. Microbiol. 68: 1071–1081.CrossRefGoogle Scholar
  44. 44.
    Jin, M., C. Gunawan, V. Balan. M. W. Lau, and B. E. Dale (2012) Simultaneous saccharification and co-fermentation (SSCF) of AFEXTM pretreated corn stover for ethanol production using commercial enzymes and Saccharomyces cerevisiae 424A (LNH-ST). Bioresour. Technol. 110: 587–594.CrossRefGoogle Scholar
  45. 45.
    Jin, M., C. Gunawan, V. Balan, X. Yu, and B. E. Dale (2012) Continuous SSCF and AFEXTM pretreated corn stover for enhanced ethanol productivity using commercial enzymes and Saccharomyces cerevisiae 424A (LNH-ST). Biotechnol. Bioeng. 110: 1302–1311.CrossRefGoogle Scholar
  46. 46.
    Ohgren, K., O. Bengtsson, M. F. Gorwa-Grauslund, M. Galbe, B. Hahn-Hagerdal, and G. Zacchi (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J. Biotechnol. 126: 488–498.CrossRefGoogle Scholar
  47. 47.
    Matsushika, A., H. Inoue, T. Kodaki, and S. Sawayama (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives. Appl. Micorobiol. Biotechnol. 84: 37–53.CrossRefGoogle Scholar
  48. 48.
    Su, R., Y. Ma, W. Qi, M. Zhang, F. Wang, R. Du, J. Yang, M. Zhang, and Z. He (2012) Ethanol production from high-solid SSCF of alkaline-pretreated corncob using recombinant Zymomonas mobilis CP4. Bioeng. Res. 6: 292–299.CrossRefGoogle Scholar
  49. 49.
    Schell, D. J., J. Farmer, M. Newman, and J. M. MacMillan (2003) Dilute–sulfuric acid pretreatment of corn stover in pilotscale reactor. Appl. Biochem. Biotechnol. 105–108: 69–85.CrossRefGoogle Scholar
  50. 50.
    Silverstein, R. A., Y. Chen, R. R. Sharma-Shivappa, M. D. Boyette, and J. Osborne (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Tech. 98: 3000–3011.CrossRefGoogle Scholar
  51. 51.
    Yasuda, M., K. Takeo, T. Matsumoto, T. Shiragami, Y. Matsushita, K. Sugamoto, and Y. Ishii (2013) Effectiveness of lignin-removal in simultaneous saccharification and fermentation of napiergrass, rice straw, silbergrass, and bamboo with different lignincontents. pp. 91–104. In: A. K. Chandel and S. Silverio da Silva (eds.). Sustainable Degradation of Lignocellulosic Biomass — Techniques, Applications and Commercialization. InTech, Croatia.Google Scholar
  52. 52.
    Attala, R. H. and D. L. VanderHart (1984) Native cellulose: A composite of two distinct crystalline forms. Sci. 223: 283–285.CrossRefGoogle Scholar
  53. 53.
    Rousselle, M. A., M. L. Nelson, C. B. Hassenboehler, and D. C. Legendre (1976) Liquid-ammonia and caustic mercerization of cotton fibers: Changes in fine structure and mechanical properties. Textile Res. J. 46: 304–310.Google Scholar
  54. 54.
    Creely, J. J. and R. H. Wade (1975) Complexes of diamines with cellulose: Study of symmetrical and unsymmetrical terminal group effects. Text. Res. J. 45: 240–246.CrossRefGoogle Scholar
  55. 55.
    Creely, J. J. and R. H. Wade (1978) Complexes of cellulose with cyclic amines and diamines. J. Polym. Sci. Polym. Lett. Ed. 16: 291–295.CrossRefGoogle Scholar
  56. 56.
    Wada, M., L. Heux, A. Isogai, Y. Nishiyama, H. Chanzy, and J. Sugiyama (2001) Improved structural data of cellulose IIII prepared in supercritical ammonia. J. Macromol. 34: 1237–1243.CrossRefGoogle Scholar
  57. 57.
    Teymouri, F., L. Lauerano-Perez, H. Alizadeh, and B. E. Dale (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour. Technol. 96: 2014–2018.CrossRefGoogle Scholar
  58. 58.
    Igarashi, K., M. Wada, and M. Samejima (2007) Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS J. 274: 1785–1792.CrossRefGoogle Scholar
  59. 59.
    Kim, T. -H. and Y. Y. Lee (2005) Pretreatment of corn stover by soaking in aqueous ammonia. Appl. Biochem. Biotechnol. Part A: Enz. Eng. Biotechnol. 124: 1119–1132.CrossRefGoogle Scholar
  60. 60.
    Yoo, C. G., N. P. Nghiem, K. B. Hicks, and T. H. Kim (2011) Pretreatment of corn stover by low moisture anhydrous ammonia (LMAA) process. Bioresour. Technol. 102: 10028–10034.CrossRefGoogle Scholar
  61. 61.
    Ko, J. K., J. S. Bak, M. W. Jung, H. J. Lee, I. -G. Choi, T. H. Kim, and K. H. Kim (2009) Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour. Technol. 100: 4374–4380.CrossRefGoogle Scholar
  62. 62.
    Yasuda, M., A. Miura, R. Yuki, Y. Nakamura, T. Shiragami, Y. Ishii, and H. Yokoi (2011) The effect of TiO2-photocatalytic pretreatment on the biological production of ethanol from lignocelluloses. J. Photochem. Photobiol. A: Chem. 220: 195–199.CrossRefGoogle Scholar
  63. 63.
    Alfenore, S., C. Molina-Jouve, S. E. Guillouet, J. -L. Uribelarrea, G. Goma, and L. Benbadis (2002) Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl. Microbiol. Biotechnol. 60: 67–72.CrossRefGoogle Scholar
  64. 64.
    Rengsirikul, K., Y. Ishii, K. Kangvansaichol, P. Pripanapong, P. Sripichitt, V. Punsuvon, P. Vaithanomsat, G. Nakamanee, and S. Tudsri (2011) Effects of inter-cutting interval on biomass yield, growth components and chemical composition of napiergrass (Pennisetum purpureum Schumach) cultivars as bioenergy crops in Thailand. Grassl. Sci. 57: 135–141.CrossRefGoogle Scholar
  65. 65.
    Khairani, L., Y. Ishii, S. Idota, R. F. Utamy, and A. Nishiwaki (2013) Variation in growth attributes, dry matter yield and quality among 6 genotypes of Napier grass used for biomass in year of establishment in southern Kyushu. Asian J. Agric. Res. 7: 15–25.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Masahide Yasuda
    • 1
    Email author
  • Yasuyuki Ishii
    • 2
  • Kazuyoshi Ohta
    • 3
  1. 1.Department of Applied Chemistry, Faculty of EngineeringUniversity of Miyazaki, Gakuen-Kibanadai NishiMiyazakiJapan
  2. 2.Department of Animal and Grassland Sciences, Faculty of AgricultureUniversity of Miyazaki, Gakuen Kibanadai NishiMiyazakiJapan
  3. 3.Department of Biochemistry and Applied Biosciences, Faculty of AgricultureUniversity of Miyazaki, Gakuen-Kibanadai NishiMiyazakiJapan

Personalised recommendations