Biotechnology and Bioprocess Engineering

, Volume 20, Issue 1, pp 109–116 | Cite as

Immobilization of laccase enzyme onto titania nanoparticle and decolorization of dyes from single and binary systems

  • Khashayar Mohajershojaei
  • Niyaz Mohammad Mahmoodi
  • Alireza Khosravi
Research Paper


Laccase enzyme was immobilized on titania nanoparticles and the resulting nanoparticles (ILTN) were characterized with various techniques: FTIR and SEM. ILTN was used to degrade three anionic dyes (Direct Red 31 (DR31), Acid Blue 92 (AB92), and Direct Green 6 (DG6)) from aqueous solution, individually and in binary systems. The effect of various parameters (e.g., ILTN dosage, pH, and dye concentration) on decolorization was evaluated and the optimized conditions were determined. The amount of ILTN, reaction time, and pH for decolorization of DR31, AB92 and DG6 was 0.1 g (for DR31 and DG6) and 0.3 g (for AB92), 20 min, and pH 3 in single systems and 0.3 g, 20 min and pH 3 in binary systems, respectively. Decolorization followed Michaelis-Menten kinetics.


enzymatic decolorization immobilized laccase titania nanoparticle single and binary systems Michaelis-Menten model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mahmoodi, N. M., R. Salehi, and M. Arami (2011) Binary system dye removal from colored textile wastewater using activated carbon: Kinetic and isotherm studies. Desalination. 272: 187–195.CrossRefGoogle Scholar
  2. 2.
    Mahmoodi, N. M., M. Arami, and J. Zhang (2011) Preparation and photocatalytic activity of immobilized composite photocatalyst (titania nanoparticle/activated carbon). J. Alloys Compd. 509: 4754–4764.CrossRefGoogle Scholar
  3. 3.
    Amini, M., M. Arami, N.M. Mahmoodi, A. Akbari (2011) Dye removal from colored textile wastewater using acrylic grafted nanomembrane. Desalination. 267: 107–113.CrossRefGoogle Scholar
  4. 4.
    Mahmoodi, N. M. (2013) Magnetic ferrite nanoparticle — alginate composite: Synthesis, characterization and binary system dye removal. J. Taiwan Institute of Chem. Eng. 44: 321–329.CrossRefGoogle Scholar
  5. 5.
    Mahmoodi, N. M., and M. (2008) Arami Modeling and sensitivity analysis of dyes adsorption onto natural adsorbent from colored textile wastewater. J. Appl. Polym. Sci. 109: 4043–4048.CrossRefGoogle Scholar
  6. 6.
    Jane-Yii, W., J. H. Sz-chwun, C. C. Ting, and C. Kuo-cheng (2005) Decolorization of azo dye in a FBR reactor using immobilized bacteria. Enz. Microbial. Technol. 37: 102–112.CrossRefGoogle Scholar
  7. 7.
    Couto, S. R. and J. L. Tocaherrera (2006) Laccase in textile industry. Biotechnol. Mol. Biol. Rev. 1: 115–120.Google Scholar
  8. 8.
    Davis, S. and R. G. Burns (1992) Covalent immobilization of laccase on activated carbon for phenolic effluent treatment. Appl. Microbiol. Biotechnol. 37: 474–479.CrossRefGoogle Scholar
  9. 9.
    Rogalski, J., E. Jozwik, A. Hatakka, and A. Leonowicz (1995) Immoblization of laccase from phleba radiata on controlled porosity glass. J. Mol. Catal. 95: 99–108.CrossRefGoogle Scholar
  10. 10.
    Tischer, W. and F. Wedekind (1999) Immobilized enzyme: Methods and applications. Rev. Top. Curr. Chem. 200: 96–100.Google Scholar
  11. 11.
    Fernandez, M., M. A. Sanroman, and D. Moldes (2013) Recent developments and applications of immobilized laccase. Biotechnol. Adv. 31: 1808–1825.CrossRefGoogle Scholar
  12. 12.
    Tehrani-Bagha, A. R., A. Shoushtari, R. M. A. Malek, and M. Abdous (2004) Effect of chemical oxidation treatment on dyeability of polypropylene. Dyes and Pigments 63: 95–100.CrossRefGoogle Scholar
  13. 13.
    Moerder, M., C. Martin, and G. Koeller (2004) Degradation of hydroxylated compounds using laccase and horseradish peroxidase immobilized on micro porous poly propylene hallow fiber membrane. J. Memb. Sci. 245: 183–190.CrossRefGoogle Scholar
  14. 14.
    Timur, S., N. Pazarlolu, R. Pilloton, and A. Telefonal (2004) Thick film sensors based on laccases from different sources immobilized in poly aniline matrix, Sensors and Actuators B:Chem. 97: 132–136.CrossRefGoogle Scholar
  15. 15.
    Yaropolov, A. I., S. V. Shleev, O. V. Morozova, E. A. Zaitseva, G. Marko-Varge, and J. Emneus (2005) An amperometric biosensor based on laccase immobilized in polymer matrices for determining phenolic compounds. J.Anal. Chem. 60: 624–628.CrossRefGoogle Scholar
  16. 16.
    Brandi, P., A. D’Annibale, C. Galli, P. Gentili, and A. S. N. Pontes, (2006) In search for practical advantages from the immobilization of an enzyme, the case of laccase. J. Mol. Catal. B 41: 61–69.CrossRefGoogle Scholar
  17. 17.
    Khani, Z., C. Jolivalt, M. Cretin, S. Tingry, and C. Innocent (2006) Alginate/carbon composite beads for laccase and glucose oxidase encapsulation, application in biofuel cell technology. Biotechnol. Lett. 28: 1779–1786.CrossRefGoogle Scholar
  18. 18.
    Nogala, W., E. Rozniecka, I. Zawiska, J. Rogalski, and M. Opallo (2006) Immobilization of ABTS-laccase system in silicate based electrode for bio electro catalytic reduction of dioxygen. Electrochem. Commun. 8: 1850–1854.CrossRefGoogle Scholar
  19. 19.
    Zhang, S., E. Gao, and L. Xia (2006) Decolorization of dichlorophenol in wastewater treatment by immobilized laccase. Hoagong Xuebao/J. Chem. Eng. 57: 359–362.Google Scholar
  20. 20.
    Niladevi, K. N. and P. Prema (2008) Immoblization of laccase from streptomyces psammoticus and its application in phenol removal using packed bed reactor. World J. Microbiol. Biotechnol. 24: 1215–1222.CrossRefGoogle Scholar
  21. 21.
    Couto, R. S., J. F. Osma, V. Saravia, G. M. Gubitz, and J. L. T Herrera (2007) Coating of immobilized laccase for stability enhancement, A novel approach. Appl. Catal. A: General 329: 156–160.CrossRefGoogle Scholar
  22. 22.
    Mohidem, N. A. and H. Mat (2009) The catalytic activity of laccase immobilized in sol-gel-silica. J. Appl. Sci. Res. 8: 3141–3145.Google Scholar
  23. 23.
    Nogala, W., K. Szot, M. Burchardt, F. Roelfs, J. Rogalski, and M. Opallo, (2010) Feedback mode SECM study of laccase and bilirubin oxidase immobilized in a sol-gel processed silicate film. Anal. 135: 2051–2058.CrossRefGoogle Scholar
  24. 24.
    Qiu, L. and Z. Huang (2010) The treatment of chlorophenols with laccase immobilized on sol-gel derived silica. World J. Microbiol. Biotechnol. 26: 775–781.CrossRefGoogle Scholar
  25. 25.
    Zhang, Y. and D. Rochefort (2010) Comparison of emulsion and vibration nozzle methods for micro encapsulation of laccase and glucose oxidase by interfacial reticulation of polyethylene imine. J. Microencapsul. 27: 703–713.CrossRefGoogle Scholar
  26. 26.
    Jiang, D. S., S. Y. Long, J. Huang, H. Y. Xiao, and J. Y. Zhou (2005) Immobilization of laccase in magnetic chitosan microspheres and study on its enzymatic properties. Wei Sheng Wu Hsueh Pao 45: 630–633.Google Scholar
  27. 27.
    Portaccio, M., S. Dimartino, P. Maiuri, D. Durante, P. Deluca, and M. Lepore (2006) Biosensors for phenolic compounds: The catechol as a substrate model. J. Mol.r Catal. B. 41: 97–102.CrossRefGoogle Scholar
  28. 28.
    Ahn, M., A. R. Zimmerman, C. E. Martinez, D. D. Archibald, J. Bollag, and J. Dec (2007) Characteristics of Trametes villosa laccase adsorbed on aluminum hydroxide. Enz. Microbial. Technol. 41: 141–148.CrossRefGoogle Scholar
  29. 29.
    Rubenwolf, S., O. Strohmeier, A. Kloke, S. Kerzenmacher, R. Zengerle, and F. Vonstettern (2010) Carbon electrodes for direct electron transfer type laccase cathodes investigated by current density cathode potential behavior. Biosens. Bioelectron. 26: 841–845.CrossRefGoogle Scholar
  30. 30.
    Bautista, L. F., G. Morales, and R. Sanz (2010), Immobilization strategies for laccase from trametes versicolor on meso structured silica materials and the application to the degradation of naphthalene. Bioresour. Technol. 101: 8541–8548.CrossRefGoogle Scholar
  31. 31.
    Bayramoglu, G., M. Yilmaz, and M. Y. Arica (2010) Reversible immobilization of laccase to poly (4-vinyl pyridine) grafted and Cu(II) chelated magnetic beads, Biodegradation of reactive dyes. Bioresour. Technol. 101: 6615–6621.CrossRefGoogle Scholar
  32. 32.
    Ortiz, J. M., R. Flores, and R. V. Duhalt (2011) Molecular design of laccase cathode for direct electron transfer in a biofuel cell. Biosens. Bioelectron. 26: 2626–2631.CrossRefGoogle Scholar
  33. 33.
    Beneyton, T., A. E. L. Harrak, A. D. Griffiths, P. Hellwig, and V. Taly (2011) Immoblization of cota,an extremophilic laccase from bacillus subtilis,on glassy carbon electrodes for biofuel cell applications. Electrochem. Commun. 13: 24–27.CrossRefGoogle Scholar
  34. 34.
    Cabana, H., A. Ahmad, and R. Leduc (2011) Conjugation of laccase from the white rot fungus trametes versicolor to chitosan and its utilization for the elimination of triclosan, Bioresour. Technol. 102: 1656–1662.Google Scholar
  35. 35.
    Georgieva, S., T. Godjevargova, D. G. Mita, N. Diano, C. Menale, and C. Nicolucci (2010) Non isothermal bioremediation of waters polluted by phenol and some of its derivatives by laccase covalently immobilized on polypropylene membranes. J. Mol. Catal. B. 66: 210–218.CrossRefGoogle Scholar
  36. 36.
    Stanescu, M. D., M. Fogorasi, B. L. Shaskolskiy, S. Gavrilas, and V. I. Lozinsky (2010) New potential biocatalysts by laccase immobilization in PVA cryogel type carrier. Appl. Biochem. Biotechnol. 160: 1947–1954.CrossRefGoogle Scholar
  37. 37.
    Zeng, H., L. Liao, M. Li, Q. Tao, J. Kang, and Y. Chen (2010) Poly aryl amide and multi walled carbon nano tube composite supported laccase electrode and its electrochemical behavior. Acta Physico -Chim. Sin. 26: 3217–3224.Google Scholar
  38. 38.
    Pavia, D. L., G. M. Lampman, and G. S. Kaiz (1987) Introduction to Spectroscopy: A Guide for Students of Organic Chemistry. WB Saunders Company, NY, USA.Google Scholar
  39. 39.
    Katuri, K. P., S. V. Mohan, S. Sridhar, B. R. Pati, and P. N. Sarma (2009) Laccase-membrane reactors for decolorization of an acid azo dye in aqueous phase: Process optimization. Water Res. 43: 3647–3658.CrossRefGoogle Scholar
  40. 40.
    Michniewicz, A., S. Ledakowicz, R. Ullrich, and M. Hofrichter (2008) Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes and Pigments 77: 295–302.CrossRefGoogle Scholar
  41. 41.
    Mendoza, L., M. Jonstrup, R. Hatti-Kaul, and B. Mattiasson (2011) Azo dye decolorization by a laccase/mediator system in a membrane reactor: Enzyme and mediator reusability. Enz. Microbial. Technol. 49: 478–484.CrossRefGoogle Scholar
  42. 42.
    Murugesan, K., I. Nam, Y. M. Kim, and Y. S. Chang (2007) Decolorization of reactive dyes by a thermosTable laccase produced by Ganoderma Lucidum in solid state culture. Enz. Microbial. Technol. 40: 1662–1672.CrossRefGoogle Scholar
  43. 43.
    Swamy, J. and J. A. Ramsay (1999) The evaluation of white rot fungi in the decolorization of textile dyes. Enz. Microbial. Technol. 24: 130–137.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Khashayar Mohajershojaei
    • 1
  • Niyaz Mohammad Mahmoodi
    • 2
  • Alireza Khosravi
    • 1
  1. 1.Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyTehranIran
  2. 2.Department of Environmental ResearchInstitute for Color Science and TechnologyTehranIran

Personalised recommendations