Biotechnology and Bioprocess Engineering

, Volume 19, Issue 4, pp 747–753 | Cite as

Surface modification of cowpea chlorotic mottle virus capsids via a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and their adhesion behavior with HeLa cells

  • Yuanzheng Wu
  • Hetong Yang
  • Young-Jin Jeon
  • Min-Young Lee
  • Jishun Li
  • Hyun-Jae ShinEmail author
Research Paper


A copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction was exploited for the surface modification of cowpea chlorotic mottle virus (CCMV). The exposed carboxyl residues of the CCMV capsids were modified with an alkyne and then further modified with an azide, using a triazole connection in the presence of CuSO4, tris(2-carboxyethyl)phosphine hydrochloride (TCEP), and a bathocuproin disulfonic acid disodium salt (BCDS). Fluorogenic coumarin was successfully grafted onto the CCMV capsids and monitored by fast protein liquid chromatography (FPLC) and UV-irradiated SDS-PAGE. An oligo-ethylene glycol (OEG) short chain and an Arg-Gly-Asp (RGD) peptide were also connected to the CCMV capsids via the CuAAC reaction. Size-exclusion FPLC, transmission electron microscopy (TEM), and dynamic light scattering (DLS) analyses confirmed the modification and integrity of the viral capsids. Interestingly, OEG-CCMV displayed a unique phenomenon of connected bridges with the intact capsids crosslinked to each other. Coumarin-CCMV, OEG-CCMV, and RGD-CCMV were absorbed onto APTES slides for cell binding with HeLa cells. The opposite adhesion behavior of OEG-CCMV and RGD-CCMV indicated the inhibition effect of OEG and the promotion effect of RGD for cell attachment. This provides a generalized method for chemical modification of the surface of virus capsids with multivalent ligands, which demonstrates the potential applications in bioimaging, tissue engineering, and drug delivery.


CCMV CuAAC reaction bioconjugation OEG RGD cell adhesion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, Z., J. Qiao, Z. Niu, and Q. Wang (2012) Natural supramolecular building blocks: From virus coat proteins to viral nanoparticles. Chem. Soc. Rev. 41: 6178–6194.CrossRefGoogle Scholar
  2. 2.
    Bronstein, L. M. (2011) Virus-based nanoparticles with inorganic cargo: What does the future hold? Small 7: 1609–1618.CrossRefGoogle Scholar
  3. 3.
    Strable, E. and M. G. Finn (2009) Chemical modification of viruses and virus-like particles. Curr. Top. Microbiol. Immunol. 327: 1–21.Google Scholar
  4. 4.
    Hosseinkhani, H., W. He, C. Chiang, P. D. Hong, D. S. Yu, A. J. Domb, and K. Ou (2013) Biodegradable nanoparticles for gene therapy technology. J. Nanopart. Res. 15: 1–15.Google Scholar
  5. 5.
    Bancroft, J. B., G. J. Hills, and R. Markham (1967) A study of the self-assembly process in a small spherical virus. Formation of organized structures from protein subunits in vitro. Virol. 31: 354–379.CrossRefGoogle Scholar
  6. 6.
    Chen, Z., C. Stauffacher, and J. E. Johnson (1990) Capsid structure and RNA packaging in comovirus. Semin. Virol. 1: 453–466.Google Scholar
  7. 7.
    Speir, J. A., S. Munshi, G. Wang, T. S. Baker, and J. E. Johnson (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3: 63–78.CrossRefGoogle Scholar
  8. 8.
    Lee, L. A., Z. Niu, and Q. Wang (2009) Viruses and virus-like protein assemblies—chemically programmable nanoscale building blocks. Nano Res. 2: 349–364.CrossRefGoogle Scholar
  9. 9.
    Wu, Y., H. Yang, and H. J. Shin (2013) Viruses as self-assembled nanocontainers for encapsulation of functional cargoes. Kor. J. Chem. Eng. 30: 1359–1367.CrossRefGoogle Scholar
  10. 10.
    Johnson, J. E. and J. A. Speir (1997) Quasi-equivalent viruses: a paradigm for protein assemblies. J. Mol. Biol. 269: 665–675.CrossRefGoogle Scholar
  11. 11.
    Reddy, V. S., P. Natarajan, B. Okerberg, K. Li, K. V. Damodaran, R. T. Morton, C. L. Brooks, and J. E. Johnson (2001) Virus Particle Explorer (VIPER), a website for virus capsid structures and their computational analyses. J. Virol. 75: 11943–11947.CrossRefGoogle Scholar
  12. 12.
    Gillitzer, E., D. Willits, M. Young, and T. Douglas (2002) Chemical modification of a viral cage for multivalent presentation. Chem. Commun. 20: 2390–2391.CrossRefGoogle Scholar
  13. 13.
    Koudelka, K. J. and M. Manchester (2010) Chemically modified viruses: Principles and applications. Curr. Opin. Chem. Biol. 14: 810–817.CrossRefGoogle Scholar
  14. 14.
    Kolb, H. C., M. G. Finn, and K. B. Sharpless (2001) Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40: 2004–2021.CrossRefGoogle Scholar
  15. 15.
    Rostovtsev, V. V., L. G. Green, V. V. Fokin, and K. B. Sharpless (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41: 2596–2599.CrossRefGoogle Scholar
  16. 16.
    TornØe, C. W., C. Christensen, and M. Meldal (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67: 3057–3064.CrossRefGoogle Scholar
  17. 17.
    Hong, V., S. I. Presolski, C. Ma, and M. G. Finn (2009) Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 48: 9879–9883.CrossRefGoogle Scholar
  18. 18.
    Wang, Q., T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless, and M. G. Finn (2003) Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125: 3192- 3193.CrossRefGoogle Scholar
  19. 19.
    Gupta, S. S., J. Kuzelka, P. Singh, W. G. Lewis, M. Manchester, and M. G. Finn (2005) Accelerated bioorthogonal cojugation: A practical method for ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjugate Chem. 16: 1572–1579.CrossRefGoogle Scholar
  20. 20.
    Bruckman, M. A., G. Kaur, L. A. Lee, F. Xie, J. Sepulveda, R. Breitenkamp, X. Zhang, M. Joralemon, T. P. Russell, T. Emrick, and Q. Wang (2008) Surface modification of tobacco mosaic virus with “Click” chemistry. ChemBioChem 9: 519–523.CrossRefGoogle Scholar
  21. 21.
    Zeng, Q., S. Saha, L. A. Lee, H. Barnhill, J. Oxsher, T. Dreher, and Q. Wang (2011) Chemoselective modification of turnip yellow mosaic virus by Cu(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction and its application in cell binding. Bioconjugate Chem. 22: 58–66.CrossRefGoogle Scholar
  22. 22.
    Wu, Y., H. Yang, and H. J. Shin (2014) Encapsulation and crystallization of Prussian blue nanoparticles by cowpea chlorotic mottle virus capsids. Biotechnol. Lett. 36: 515–521.CrossRefGoogle Scholar
  23. 23.
    Schlick, T. L., Z. Ding, E. W. Kovacs, and M. B. Francis (2005) Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc. 127: 3718–3723.CrossRefGoogle Scholar
  24. 24.
    Steinmetz, N. F., G. P. Lomonossoff, and D. J. Evans (2006) Cowpea mosaic virus for material fabrication: Addressable carboxylate groups on a programmable nanoscaffold. Langmuir 22: 3488–3490.CrossRefGoogle Scholar
  25. 25.
    Shangari, N., T. S. Chan, K. Chan, S. H. Wu, and P. J. O’Brien (2007) Copper-catalyzed ascorbate oxidation results in glyoxal/AGE formation and cytotoxicity. Mol. Nutr. Food Res. 51: 445–455.CrossRefGoogle Scholar
  26. 26.
    Sivakumar, K., F. Xie, B. M. Cash, S. Long, H. N. Barnhill, and Q. Wang (2004) A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org. Lett. 6: 4603–4606.CrossRefGoogle Scholar
  27. 27.
    Yamada, K., S. Yoshii, S. Kumagai, I. Fujiwara, K. Nishio, M. Okuda, N. Matsukawa, and I. Yamashita (2006) High-density and highly surface selective adsorption of protein-nanoparticle complexes by controlling electrostatic interaction. Jpn. J. Appl. Phys. 45: 4259–4264.CrossRefGoogle Scholar
  28. 28.
    Rong, J., L. A. Lee, K. Li, B. Harp, C. M. Mello, Z. Niu, and Q. Wang (2008) Oriented cell growth on self-assembled bacteriophage M13 thin films. Chem. Commun. 41: 5185–5187.CrossRefGoogle Scholar
  29. 29.
    Lavelle, L., M. Gingery, M. Phillips, W. M. Gelbart, C. M. Knobler, R. D. Cadena-Nava, and J. Ruiz-Garcia (2009) Phase diagram of self-assembled viral capsid protein polymorphs. J. Phys. Chem. B. 113: 3813–3819.CrossRefGoogle Scholar
  30. 30.
    Waldeck, J., F. Häger, C. Höltke, C. Lanckohr, A. von Wallbrunn, G. Torsello, W. Heindel, G. Theilmeier, M. Schäfers, and C. Bremer (2008) Fluorescence reflectance imaging of macrophagerich atherosclerotic plaques using an alphav-beta3 integrin-targeted fluorochrome. J. Nucl. Med. 49: 1845–1851.CrossRefGoogle Scholar
  31. 31.
    Laitinen, I., A. Saraste, E. Weidl, T. Poethko, A. W. Weber, S. G. Nekolla, P. Leppänen, S. Ylä-Herttuala, G. Hälzlwimmer, A. Walch, I. Esposito, H. J. Wester, J. Knuuti, and M. Schwaiger (2009) Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD or imaging of vascular inflammation in atherosclerotic mice. Circ. Cardiovasc. Imaging 2: 331–338.CrossRefGoogle Scholar
  32. 32.
    Flores, K. A., J. C. Salgado, G. Zapata-Torres, Z. P. Gerdtzen, M. J. Gonzalez, and M. A. Hermoso (2012) Effect of the electrostatic potential on the internalization mechanism of cell penetrating peptides derived from TIRAP. Biotechnol. Bioproc. Eng. 17: 485–499.CrossRefGoogle Scholar
  33. 33.
    Desai, N. P. and J. A. Hubbell (1991) Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. J. Biomed. Mater. Res. 25: 829–843.CrossRefGoogle Scholar
  34. 34.
    McPherson, T., A. Kidane, I. Szleifer, and K. Park (1998) Prevention of protein adsorption by tethered poly (ethylene oxide) layers: Experiments and single-chain mean-field analysis. Langmuir 14: 176–186.CrossRefGoogle Scholar
  35. 35.
    Kaur, G., W. Zhan, C. Wang, H. Barnhill, H. Tian, and Q. Wang (2010) Crosslinking of viral nanoparticles with “clickable” fluorescent crosslinkers at the interface. Sci. China Chem. 53: 1287–1293.CrossRefGoogle Scholar
  36. 36.
    Rhee, S. and F. Grinnell (2007) Fibroblast mechanics in 3D collagen matrices. Adv. Drug Delivery Rev. 59: 1299–1305.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yuanzheng Wu
    • 1
    • 2
  • Hetong Yang
    • 2
  • Young-Jin Jeon
    • 3
  • Min-Young Lee
    • 3
  • Jishun Li
    • 2
  • Hyun-Jae Shin
    • 1
    Email author
  1. 1.Department of Chemical and Biochemical EngineeringChosun UniversityGwangjuKorea
  2. 2.Biotechnology Center of Shandong Academy of SciencesJinanChina
  3. 3.Department of Pharmacology, School of MedicineChosun UniversityGwangjuKorea

Personalised recommendations