Advertisement

Biotechnology and Bioprocess Engineering

, Volume 19, Issue 4, pp 605–612 | Cite as

Molecular cloning and characterization of a novel glucansucrase from Leuconostoc mesenteroides subsp. mesenteroides LM34

  • Hee-Kyoung Kang
  • Thi Thanh Hanh Nguyen
  • Ha-Na Jeong
  • Min-Eon Park
  • Doman Kim
Research Paper

Abstract

Leuconostoc mesenteroides LM34 was isolated from kimchi, a traditional fermented Korean food. L. mesenteroides LM34 produced extracellular glucansucrase (DSRLM34), which is responsible for the synthesis of soluble glucan using sucrose. The DSRLM34 gene consists of a 4,503 bp open reading frame (ORF) and encodes an enzyme of 1,500 amino acids with an apparent molecular mass of 165 kDa. The deduced amino-acid sequence showed the highest amino-acid sequence identity (98%) to that of glucansucrase of Lactobacillus lactis. The gene was over-expressed in Escherichia coli strain and the recombinant enzyme (rDSRLM34) was purified. Both DSRLM34 and rDSRLM34 synthesized glucan mainly containing α-1, 6 glucosidic linkage and branched α-1, 3 glucosidic linkages. The enzyme exhibited optimum activity at 30°C and pH 5.0. DSRLM34 has promising potential as a thickening agent in sucrose-supplemented milk.

Keywords

Leuconostoc mesenteroides glucansucrase dextran kimchi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reynold, J. A., J. D. Kastello, D. G. Harrington, C. L. Crabbs, C. J. Peters, J. V. Jemski, G. H. Scott, and N. R. Di Luzio (1980) Glucan-induced enhancement of host resistance to selected infectious diseases. Infect. Immun. 30: 51–57.Google Scholar
  2. 2.
    Salminen, S., A. Von Wright, L. Morelli, P. Marteau, D. Brassart, W. M. De Vos, R. Fondén, M. Saxelin, K. Collins, G. Mogensen, S. E. Birkeland, and T. Mattila-Sandholm (1998) Demonstration of safety of probiotics-a review. Int. J. Food Microbiol. 44: 93–106.CrossRefGoogle Scholar
  3. 3.
    Rachini, A., D. Pietrella, P. Lup, A. Torosantucci, P. Chiani, C. Bromuro, C. Projetti, F. Bistoni, A. Casone, and A. Vecchiarelli (2007) An anti-β-glucan monoclonal antibody inhibits growth and capsule formation of Cryptococcus neoformans in vitro and exerts therapeutic, anticryptococcal activity in vitro. Infect. Immun. 75: 5085–5094.CrossRefGoogle Scholar
  4. 4.
    Kim, D. and J. F. Robyt (1994) Production and selection of mutants of Leuconostoc mesenteroides constitutive for glucansucrase. Enz. Microb. Technol. 16: 659–664.CrossRefGoogle Scholar
  5. 5.
    Jeanes, A., W. C. Haynes, C. A. Wilham, J. C. Rankin, E. H. Melvin, and M. J. Austin (1954) Characterization and classification of dextrans from ninety-six strains of bacteria. J. Am. Chem. Soc. 76: 5041–5052.CrossRefGoogle Scholar
  6. 6.
    Majumder, A., A. Singh, and A. Goyal (2009) Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization. Carbohyd. Polym. 75: 150–156.CrossRefGoogle Scholar
  7. 7.
    Remaud-Simeon, M., R. M. P. Willemot, Sarcabal, G. P. De Montalk, and P. Monsan (2000) Glucansucrases: Molecular engineering and oligosaccharide synthesis. J. Mol. Catal. B-Enz. 10: 117–128.CrossRefGoogle Scholar
  8. 8.
    Cote, G. L. and T. D. Leathers (2005) A method for surveying and classifying Leuconostoc spp. glucanases according to strain-dependent acceptor product patterns. J. Ind. Microbiol. Biotechnol. 32: 53–60.CrossRefGoogle Scholar
  9. 9.
    Naessens, M., A. Cerdobbel, W. Soetaert, and E. J. Vandamme (2005) Leuconostoc dextransucrase and dextran: Production, properties and applications. J. Chem. Technol. Biot. 80: 845–860.CrossRefGoogle Scholar
  10. 10.
    Robyt, J. F., S. H. Yoon, and R. Mukerjea (2008) Dextransucrase and the mechanism for dextran biosynthesis. Carbohyd. Res. 343: 3039–3048.CrossRefGoogle Scholar
  11. 11.
    Robyt, J. F. and T. F. Walseth (1979) Production, purification, and properties of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Carbohyd. Res. 68: 95–111.CrossRefGoogle Scholar
  12. 12.
    Broadbent, J. R., D. J. McMahon, C. J. Oberg, and D. L. Welker (2001) Use of exopolysaccharide-producing cultures to improve the functionality of low fat cheese. Int. Dairy J. 11: 433–439.CrossRefGoogle Scholar
  13. 13.
    Ruas-Madiedo, P., R. Tuinier, M. Kanning, and P. Zoon (2002) Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. Int. Dairy J. 12: 689–695.CrossRefGoogle Scholar
  14. 14.
    Tamime, A. Y. and V. M. E. Marshall (1977) Microbiology and technology of fermented milks. pp. 57–52. In: B. E. Law (ed.). Microbiology and biochemistry of cheese and fermented milks. 2nd ed. Blackie Academic and Professional, London, UK.Google Scholar
  15. 15.
    Tamime, A. Y. and R. K. Robinson (2007) Yogurt science and technology. Woodhead Publishing Ltd., Cambridge, UK.Google Scholar
  16. 16.
    Shah, N. P. (2007) Functional cultures and health benefits. Int. Dairy J. 17: 1262–1277.CrossRefGoogle Scholar
  17. 17.
    Shiby, V. K. and H. N. Mishra (2013) Fermented milks and milk products as functional foods. Crit. Rev. Food Sci. Nutr. 53: 482–496.CrossRefGoogle Scholar
  18. 18.
    Kim, J. M., H. N. Seo, T. S. Hwang, S. H. Lee, and D. H. Park (2008) Characterization of expolysaccharide (EPS) produced by Weissella hellencia SKkimchi3 isolated from Kimchi. J. Micronbiol. 46: 535–541.Google Scholar
  19. 19.
    Kim, Y. M., M. J. Yeon, N. S. Choi, Y. H. Chang, M. Y. Jung, J. J. Song, and J. S. Kim (2010) Purification and characterization of a novel glucansucrase from Leuconostoc lactis EG001. Microbiol. Res. 165: 384–391.CrossRefGoogle Scholar
  20. 20.
    Eom, H. J., D. M. Seo, and N. S. Han (2007) Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int. J. Food Microbiol. 117: 61–67.CrossRefGoogle Scholar
  21. 21.
    Chang, Y. H., M. Jung. I. S. Park, and H. M. Oh (2008) Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. Int. J. Syst. Evol. Microbiol. 58: 2316–2320.CrossRefGoogle Scholar
  22. 22.
    Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.CrossRefGoogle Scholar
  23. 23.
    Meulenbeld, G. H. and S. Hartmans (2000) Transglycosylation by Streptococcus mutans GS-5 glucosyltransferase-D: Acceptor specificity and engineering of reaction conditions. Biotechnol. Bioeng. 70: 363–369.CrossRefGoogle Scholar
  24. 24.
    Kralj, S., G. H. van Geel-Schutten, M. J. van der Maarel, and L. Dijkhuizen (2003) Efficient screening methods for glucosyltransferase genes in Lactobacillus strains, Biocatal. Biotransform. 21: 181–187.CrossRefGoogle Scholar
  25. 25.
    Miller, A. W. and J. F. Robyt (1986) Detection of dextransucrase and levansucrase on polyacrylamide gels by the periodic acid-Schiff stain: Staining artifacts and their prevention. Anal. Biochem. 156: 357–363.CrossRefGoogle Scholar
  26. 26.
    Tanriseven, A. and J. F. Robyt (1993) Interpretation of dextran-sucrase inhibition at high sucrose concentrations. Carbohydr. Res. 245: 97–104.CrossRefGoogle Scholar
  27. 27.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.CrossRefGoogle Scholar
  28. 28.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar
  29. 29.
    Mukerjea, R., D. Kim, and J. F. Robyt (1996) Simplified and improved methylation analysis of saccharides, using a modified procedure and thin-layer chromatography. Carbohydr. Res. 292: 11–20.CrossRefGoogle Scholar
  30. 30.
    Bejar, W., V. Gabriel. M. Amari. S. Morel, M. Mezghani, E. Maguin, C. Fontagné-Faucher, S. Bejar, and H. Chouayekh (2013) Characterization of glucansucrase and dextran from Weissella sp. TN610 with potential as safe food additives. Int. J. Biol. Marcomol. 52: 125–132.CrossRefGoogle Scholar
  31. 31.
    Lacaze, G., M. Wick, and S. Cappelle (2007) Emerging fermentation technologies: development of novel sourdoughs. Food Microbiol. 24: 155–160.CrossRefGoogle Scholar
  32. 32.
    Singh, M., S. Kim, and S. X. Liu (2012) Effect of purified oat â-glucan on fermentation of set-style yogurt mix. J. Food Sci. 77: 195–201.CrossRefGoogle Scholar
  33. 33.
    Ayala-Hernandez, I., H. D. Goff, and M. Corredig (2008) Interactions between milk proteins and exopolysaccharides produced by Lactococcus lactis observed by scanning electron microscopy. J. Dairy Sci. 91: 2583–2590.CrossRefGoogle Scholar
  34. 34.
    Kang, H. K., E. S. Seo, J. F. Robyt, and D. Kim (2003) Directed evolution of a dextransucrase for increased constitutive activity and the synthesis of a highly branched dextran. J. Mol. Caltal. BEnz. 26: 167–176.CrossRefGoogle Scholar
  35. 35.
    Kang, H. K., Y. M. Kim, and D. Kim (2008) Functional, genetic, and bioinformatic characterization of dextransucrase (DSRBCB4) gene in Leuconostoc mesenteroides B-1299CB4. J. Microbiol. Biotechnol. 18: 1050–1058.Google Scholar
  36. 36.
    Kang, H. K., J. S. Oh, and D. Kim (2009) Molecular characterization and expression analysis of the glucansucrase DSRWC from Weissella cibaria synthesizing a α(1→6) glucan. FEMS Microbiol. Lett. 292: 33–41.CrossRefGoogle Scholar
  37. 37.
    Park, M. R., H. J. Ryu, D. Kim, J. Y. Choe, and J. F. Robyt (2001) Characterization of Leuconostoc mesenteroides B-742CB dex-transucrase expressed in Escherichia coli. J. Microbiol. Biotechn. 11: 628–635.Google Scholar
  38. 38.
    Funame, K., M. Yamada, M. Shiraiwa, H. Takahara, N. Yamanoto, Y. Ichishima, and M. Kobayashi (1995) Aggregated form of dextransucrases from Leuconostoc mesenteroides NRRL B-512F and its constitutive mutant. Biosci. Biotech. Biochem. 59: 776–780.CrossRefGoogle Scholar
  39. 39.
    Thompson, J. D., D. G. Higgins, and T. J. Gibson (1994) CLUST-ALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hee-Kyoung Kang
    • 1
  • Thi Thanh Hanh Nguyen
    • 2
  • Ha-Na Jeong
    • 2
  • Min-Eon Park
    • 2
  • Doman Kim
    • 2
    • 3
  1. 1.Department of Biomedical ScienceChosun UniversityGwangjuKorea
  2. 2.Institutes of Green Bio Science & TechnologySeoul National UniversityPyeongchangKorea
  3. 3.Department of Food and Animal Biotechnology, College of Agriculture and Life ScienceSeoul National UniversitySeoulKorea

Personalised recommendations