Advertisement

Biotechnology and Bioprocess Engineering

, Volume 19, Issue 3, pp 478–492 | Cite as

High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain

  • Xingjiang Li
  • Ya Liu
  • Ying Yang
  • Hua Zhang
  • Hualin Wang
  • Yue Wu
  • Min Zhang
  • Ting Sun
  • Jieshun Cheng
  • Xuefeng Wu
  • Lijun Pan
  • Shaotong Jiang
  • Hongwei Wu
Research Paper

Abstract

The microbial fermentation of malic acid, which is one of the most important organic acid platforms used widely in food and chemical engineering, has attracted considerable interest. A malate production strain was isolated, a mutation was induced, and regulation of the metabolic network was then conducted. The identification results showed that the malic acid production strain, HF- 119, belonged to Rhizopus delemar. An analysis of the metabolic pathway showed that the malic acid flux of this strain occurred through three main pathways, and many byproducts, such as succinic acid, fumaric acid and ethanol, were produced. Although corn straw hydrolyte was used, the metabolism of xylose was not as rapid as that of glucose. Subsequently, breeding of the strains and regulation of the metabolic network resulted in an increase in malate yield, and the strain HF-121 produced more than 120 g/L malic acid within 60 h. The ability to produce malic acid from biomass hydrolyte highlights the industrial development potential of this strain.

Keywords

Rhizopus Delemar malic acid biomass hydrolyte metabolic network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrerences

  1. 1.
    Orjuela, A., A. Orjuela, C. T. Lira, and D. J. Miller (2013) A novel process for recovery of fermentation-derived succinic acid: Process design and economic analysis. Bioresour. Technol. 139: 235–241.CrossRefGoogle Scholar
  2. 2.
    Nakayama, S., K. Tabata, T. Oba, K. Kusumoto, S. Mitsuiki, T. Kadokura, and A. Nakazato (2012) Characteristics of the high malic acid production mechanism in Saccharomyces cerevisiae sake yeast strain No. 28. J. Biosci. Bioeng. 114: 281–285.CrossRefGoogle Scholar
  3. 3.
    Oba, T., H. Suenaga, S. Nakayama, S. Mitsuiki, H. Kitagaki, K. Tashiro, and S. Kuhara (2011) Properties of a high malic acidproducing strain of Saccharomyces cerevisiae isolated from sake mash. Biosci. Biotechnol. Biochem. 75: 2025–2029.CrossRefGoogle Scholar
  4. 4.
    Zhang, X., X. Wang, K. T. Shanmugam, and L. O. Ingram (2011) L-malate production by metabolically engineered Escherichia coli. Appl. Environ. Microbiol. 77: 427–434.CrossRefGoogle Scholar
  5. 5.
    Han, L. J., Q. J. Yan, X. Y. Liu, and J. Y. Hu (2002) Straw resources and their utilization in China. Transactions of the CSAE. 18: 87–91.Google Scholar
  6. 6.
    Battat, E., Y. Peleg, A. Bercovitz, J. S. Rokem, and I. Goldberg (1991) Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol. Bioeng. 37: 1108–1116.CrossRefGoogle Scholar
  7. 7.
    Taing, O. and K. Taing (2007) Production of malic and succinic acids by sugar-tolerant yeast Zygosaccharomyces rouxii. Eur. Food. Res. Technol. 224: 343–347.CrossRefGoogle Scholar
  8. 8.
    Zelle, R. M., E. Hulster, W. A. Winden, P. Waard, C. Dijkema, A. A. Winkler, J. M. Geertman, J. P. van Dijken, J. T. Pronk, and A. J. van Maris (2008) Malic acid production by Saccharomyces cerevisiae: Engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl. Environ. Microbiol. 74: 2766–2777.CrossRefGoogle Scholar
  9. 9.
    Brown, S. H., L. Bashkirova, R. Berka, T. Chandler, T. Doty, K. McCall, M. McCulloch, S. McFarland, S. Thompson, D. Yaver, and A. Berry (2013) Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl. Microbiol. Biotechnol. 97: 8903–8912.CrossRefGoogle Scholar
  10. 10.
    Abe, A., Y. Oda, K. Asano, and T. Sone (2007) Rhizopus delemar is the proper name for Rhizopus oryzae fumaric-malic acid producers. Mycologia. 99: 714–722.CrossRefGoogle Scholar
  11. 11.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar
  12. 12.
    Kregiel, D., J. Berlowska, and W. Ambroziak (2008) Succinate dehydrogenase activity assay in situ with blue tetrazolium salt in crabtree-positive Saccharomyces cerevisiae strain. Food Technol. Biotechnol. 46: 376–380.Google Scholar
  13. 13.
    Friedberg, D., Y. Peleg, A. Monsonego, S. Maissi, E. Battat, and I. Goldberg (1995) The fumR gene encoding fumarase in the filamentous fungus Rhizopus oryzae: Cloning, structure and expression. Gene. 163: 139–144.CrossRefGoogle Scholar
  14. 14.
    Payne, J. and J. G. Morris (1969) Pyruvate carboxylase in Rhodopseudomonas spheroides. J. Gen. Microbiol. 59: 97–101.CrossRefGoogle Scholar
  15. 15.
    Nielsen, J. (2001) Metabolic engineering. Appl. Microbiol. Biotechnol. 55: 263–283.CrossRefGoogle Scholar
  16. 16.
    Riascosa, C., A. K. Gomberta, and J. M. Pintoa (2005) A global optimization approach for metabolic flux analysis based on labeling balances. Comput. Chem. Eng. 29: 447–458.CrossRefGoogle Scholar
  17. 17.
    Skory, C. D., S. N. Freer, and R. J. Bothast (1998) Production of L-lactic acid by Rhizopus oryzae under oxygen limiting conditions. Biotechnol. Lett. 20: 191–194.CrossRefGoogle Scholar
  18. 18.
    Liu, Y. P., P. Zheng, Y. Ni, J. J. Dong, P. Wei, and Z. H. Sun (2008) Breeding of Monofluoroacetate-resistant Strains of Actinobacillus succinogenes and the mechanism based on metabolic flux analysis. Chin. J. Biotechnol. 24: 460–467.Google Scholar
  19. 19.
    Dhillon, G. S., S. K. Brar, M. Verma, and R. D. Tyagi (2011) Recent advances in citric acid bio-production and recovery. Food Bioproc. Tech. 4: 505–529.CrossRefGoogle Scholar
  20. 20.
    Miura, S., T. Arimura, L. D. Itoda, J. B. Feng, G. H. Bin, and M. Okabe (2004) Production of L-lactic acid from corncob. J. Biosci. Bioeng. 97: 153–157.CrossRefGoogle Scholar
  21. 21.
    McKinlay, J. B., Y. Shachar-Hill, J. G. Zeikus, and C. Vieille (2007) Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analysis of 13C-labeled metabolic product isotopomers. Metab. Eng. 9: 177–192.CrossRefGoogle Scholar
  22. 22.
    Szyperski, T. (1995) Biosynthetically directed fractional 13Clabeling of proteinogenic amino acids: An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232: 433–448.CrossRefGoogle Scholar
  23. 23.
    Longacre, A., J. M. Reimers, J. E. Gannon, and B. E. Wright (1997) Flux analysis of glucose metabolism in Rhizopus oryzae for the purpose of increasing lactate yields. Fungal. Genet. Biol. 21: 30–39.CrossRefGoogle Scholar
  24. 24.
    Santamaria, B., A. M. Estevez, O. H. Martinez-Costa, and J. J. Aragon (2002) Creation of an allosteric phosphofructokinase starting with a nonallosteric enzyme: The case of dictyostelium discoideum phosphofructokinase. J. Biol. Chem. 277: 1210–1216.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xingjiang Li
    • 3
  • Ya Liu
    • 1
  • Ying Yang
    • 1
    • 2
  • Hua Zhang
    • 1
  • Hualin Wang
    • 1
  • Yue Wu
    • 1
  • Min Zhang
    • 1
  • Ting Sun
    • 1
  • Jieshun Cheng
    • 1
  • Xuefeng Wu
    • 1
  • Lijun Pan
    • 1
  • Shaotong Jiang
    • 1
  • Hongwei Wu
    • 3
  1. 1.School of Biotechnology and Food EngineeringHefei University of TechnologyAnhuiChina
  2. 2.School of Environment and Energy EngineeringAnhui Jianzhu UniversityAnhuiChina
  3. 3.Department of Chemical EngineeringCurtin UniversityPerthAustralia

Personalised recommendations