Biotechnology and Bioprocess Engineering

, Volume 19, Issue 1, pp 132–142 | Cite as

Enhancing the carbon flux and NADPH supply to increase L-isoleucine production in Corynebacterium glutamicum

  • Lianghong Yin
  • Jianxun Zhao
  • Cheng Chen
  • Xiaoqing Hu
  • Xiaoyuan Wang
Research Paper


Our previous work has shown that L-isoleucine production in Corynebacterium glutamicum IWJ001 could be increased by overexpressing ilvA1 encoding a feedback-resistant threonine dehydratase, ilvBN1 encoding a feedback-resistant acetohydroxy acid synthase, lrp encoding the global regulator Lrp, brnFE encoding the two-component export system BrnFE, or ppnk1 encoding NAD kinase. The main purpose of this study is to further increase the L-isoleucine production in C. glutamicum IWJ001 by overexpressing the above genes in various combinations. Several C. glutamicum strains IWJ001/pDXW-8-ppnk1-lrp-brnFE, IWJ001/pDXW-8-ilvBN1-ilvA1-lrp-brnFE, IWJ001/pDXW-8-ilvBN1-ilvA1-ppnk1, and IWJ001/pDXW-8-ppnk1-ilvBN1-ilvA1-lrp-brnFE were constructed, and L-isoleucine production and activities of several key enzymes in these strains were analyzed. Compared with the control strain IWJ001/pDXW-8, L-isoleucine production increased in all of the four strains. IWJ001/pDXW-8-ilvBN1-ilvA1-ppnk1 showed the highest L-isoleucine production and produced 32.3 g/L L-isoleucine in 72 h fed batch fermentation. The results indicate that L-isoleucine production in C. glutamicum could be increased by enhancing the carbon flux and NADPH supply in the biosynthetic pathway.


Corynebacterium glutamicum L-isoleucine ilvBN ilvA ppnk lrp brnFE NADPH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Park, J. H. and S. Y. Lee (2010) Metabolic pathways and fermentative production of L-aspartate family amino acids. J. Biotechnol. 5: 560–577.CrossRefGoogle Scholar
  2. 2.
    Eggeling, L., S. Morbach, and H. Sahm (1997) The fruits of molecular physiology: Engineering the L-isoleusine biosynthesis pathway in Corynebacterium glutamicum. J. Biotechnol. 56: 167–182.CrossRefGoogle Scholar
  3. 3.
    Umbarger, H. E. (1987) Biosynthesis of the branched-chain amino acids. pp. 352–367. In: F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (eds.). Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington D. C., USA.Google Scholar
  4. 4.
    Morinaga, Y., H. Takagi, M. Ishida, K. Miwa, T. Sato, S. Nakamori, and K. Sano (1987) Threonine production by co-existence of cloned genes coding homoserine dehydrogenase and homoserine kinase in Brevibacterium lactofermentum. Agric. Biol. Chem. 51: 93–100.CrossRefGoogle Scholar
  5. 5.
    Colon, G. E., M. S. M. Jetten, T. T. Nguyen, M. E. Gubler, M. T. Follettie, A. J. Sinskey, and G. Stephanopoulos (1994) Effect of inducible thrB expression on amino acid production in Corynebacterium lactofermentum ATCC 21799. Appl. Environ. Microbiol. 61: 74–78.Google Scholar
  6. 6.
    Dong, X., P. J. Quinn, and X. Wang (2011) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine. Biotechnol. Adv. 29: 11–23.CrossRefGoogle Scholar
  7. 7.
    Morbach, S., H. Sahm, and L. Eggeling (1995) Use of feedbackresistant threonine dehydratases of Corynebacterium glutamicum to increase carbon flux towards L-isoleucine. Appl. Environ. Microbiol. 61: 4315–4320.Google Scholar
  8. 8.
    Elišáková, V., M. Pátek, J. Holátko, J. Nešvera, D. Leyval, J. L. Goergen, and S. Delaunay (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl. Environ. Microbiol. 71: 207–213.CrossRefGoogle Scholar
  9. 9.
    Kennerknecht, N., H. Sahm, M.-R. Yen, M. Pátek, M. H. Saier, and L. Eggeling (2002) Export of L-isoleucine from Corynebacterium glutamicum: A two-gene-encoded member of a new translocator family. J. Bacteriol. 184: 3947–3956.CrossRefGoogle Scholar
  10. 10.
    Yin, L., F. Shi, X. Hu, C. Chen, and X. Wang (2013) Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J. Appl. Microbiol. 114: 1369–1377.CrossRefGoogle Scholar
  11. 11.
    Ikeda, S., I. Fujita, and F. Yoshinaga (1976) Screening of L-isoleucine producers among ethionine resistant mutants of L-threonine producing bacteria. Agric. Biol. Chem. 40: 511–516.CrossRefGoogle Scholar
  12. 12.
    Kase, H. and K. Nakayama (1977) L-Isoleucine production by analog-resistant mutants derived from threonine-producing strain of Corynebacterium glutamicum. Agric. Biol. Chem. 41: 109–116.CrossRefGoogle Scholar
  13. 13.
    Kalinowski, J., B. Bathe, D. Bartels, N. Bischoff, M. Bott, A. Burkovski, N. Dusch, L. Eggeling, B. J. Eikmanns, and L. Gaigalat (2003) The complete Corynebacterium glutamicum ATCC13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5–25.CrossRefGoogle Scholar
  14. 14.
    Morbach, S., R. Kelle, S. Winkels, H. Sahm, and L. Eggeling (1996) Engineering the homoserine dehydrogenase and threonine dehydratase control points to analyse flux towards L-isoleucine in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 45: 612–620.CrossRefGoogle Scholar
  15. 15.
    Eggeling, L., H. Sahm, and A. A. de Graaf (1996) Quantifying and directing metabolite flux: Application to amino acid overproduction. Metab. Eng. 54: 1–30.CrossRefGoogle Scholar
  16. 16.
    Yin, L., X. Hu, D. Xu, J. Ning, J. Chen, and X. Wang (2012) Coexpression of feedback-resistant threonine dehydratase and acetohydeoxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab. Eng. 14: 542–550.CrossRefGoogle Scholar
  17. 17.
    Shi, F., X. J. Huan, X. Y. Wang, and J. F. Ning (2012) Overexpression of NAD kinases improves the L-isoleucine biosyntheis in Corynebacterium glutamicum ssp. lactofermentum. Enz. Microb. Tech. 51: 73–80.CrossRefGoogle Scholar
  18. 18.
    Peng, Z. J., J. Fang, J. H. Li, L. Liu, G. C. Du, J. Chen, X. Y. Wang, J. F. Ning, and L. M. Cai (2010) Combined dissolved oxygen and pH control strategy to improve the fermentative production of L-isoleucine by Brevibacterium lactofermentum. Bioproc. Biosyst. Eng. 33: 339–345.CrossRefGoogle Scholar
  19. 19.
    Sambrook, J. and R. W. Russel (2001) Molecular cloning: A laboratory manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.Google Scholar
  20. 20.
    Xu, D., Y. Tan, X. Huan, X. Hu, and X. Wang (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J. Microbiol. Meth. 80: 86–92.CrossRefGoogle Scholar
  21. 21.
    Miller, L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426–428.CrossRefGoogle Scholar
  22. 22.
    Koros, A., Z. S. Varga, and P. Molnar (2008) Simultaneous analysis of amino acids and amines as their ophthalaldehydeethanethiol-9-fluorenylmethyl chloroformate derivatives in cheese by high-performance liquid chromatography. J. Chromatogr. A. 1203: 146–152.CrossRefGoogle Scholar
  23. 23.
    Livak, K. J. and T. D. Schmittgen (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method. Methods 25: 402–408.CrossRefGoogle Scholar
  24. 24.
    Nolden, L., M. Farwick, R. Krämer, and Burkovski (2001) Glutamine synthetases of Corynebacterium glutamicum: Transcriptional control and regulation of activity. FEMS Microbiol. Lett. 201: 91–98.CrossRefGoogle Scholar
  25. 25.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar
  26. 26.
    Miyajima, R., S. -I. Otsuka, and I. Shiio (1968) Regulation aspartate family amino acid biosynthesis in Brevibacterium flavum. J. Biochem. 63: 139–148.Google Scholar
  27. 27.
    Guillouet, S., A. A. Rodal, and A. J. Sinskey (1999) Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl. Environ. Microbiol. 65: 3100–3107.Google Scholar
  28. 28.
    Westerfeld, W. W. (1945) A colorimetrie determination of blood acetoin. J. Biol. Chem. 161: 495–502.Google Scholar
  29. 29.
    Eggeling, I., L. Eggeling, and H. Sahm (1987) Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of α-ketobutyrate to L-isoleucine. Appl. Microbiol. Biotechnol. 25: 346–351.Google Scholar
  30. 30.
    Shi, F., S. Kawai, S. Mori, E. Kono, and K. Murata (2005) Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. FEBS. J. 272: 3337–3379.CrossRefGoogle Scholar
  31. 31.
    Lee, I. Y., M. K. Kim, Y. H. Park, and S. Y. Lee (1996) Regulatory effects of cellular nicotinamide nucleotides and enzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli. Biotechnol. Bioeng. 52: 707–712.CrossRefGoogle Scholar
  32. 32.
    Zerez, C. R., S. J. Lee, and K. R. Tanaka (1987) Spectrophotometric determination of oxidized and reduced pyridine nucleotides in erythrocytes using a single extraction procedure. Anal. Biochem. 164: 367–373.CrossRefGoogle Scholar
  33. 33.
    Kawa, I. S., S. Mori, T. Mukai, W. Hashimoto, and K. Murata (2001) Molecular characterization of Escherichia coli NAD kinase. Eur. J. Biochem. 268: 4359–4365.CrossRefGoogle Scholar
  34. 34.
    Grose, J. H., L. Joss, S. F. Velick, and J. R. Roth (2006) Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc. Natl. Acad. Sci. USA 103: 7601–7606.CrossRefGoogle Scholar
  35. 35.
    Sauer, U., F. Canonaco, S. Heri, A. Perrenoud, and E. Fischer (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 279: 6613–6619.CrossRefGoogle Scholar
  36. 36.
    Koffas, M. and G. Stephanopoulos (2005) Strain improvement by metabolic engineering: lysine production as a case study for systems biology. Curr. Opin. Biotechnol. 16: 361–366.CrossRefGoogle Scholar
  37. 37.
    Lee, K. H., J. H. Park, T. Y. Kim, H. U. Kim, and S. Y. Lee (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol. 3: 149.CrossRefGoogle Scholar
  38. 38.
    Kind, S., J. Becher, and C. Wittmann (2012) Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway-Metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum. Metab. Eng. 15: 184–195.CrossRefGoogle Scholar
  39. 39.
    Becker, J., O. Zelder, S. Häfner, H. Schröder, and C. Wittmann (2011) From zero to hero-Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159–168.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lianghong Yin
    • 1
    • 2
  • Jianxun Zhao
    • 1
    • 2
  • Cheng Chen
    • 1
    • 2
  • Xiaoqing Hu
    • 1
  • Xiaoyuan Wang
    • 1
    • 2
  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Key Laboratory of Industrial Biotechnology of Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina

Personalised recommendations